Asymptotics of k-nearest Neighbor Riesz Energies

被引:0
|
作者
Douglas P. Hardin
Edward B. Saff
Oleksandr Vlasiuk
机构
[1] Center for Constructive Approximation,Department of Mathematics
[2] Vanderbilt University,Department of Mathematics
[3] Florida State University,undefined
来源
关键词
Riesz energy; -nearest neighbors; Equilibrium configurations; Covering radius; Separation distance; Meshing algorithms; Primary 31C20; 28A78; Secondary 52A40;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain new asymptotic results about systems of N particles governed by Riesz interactions involving k-nearest neighbors of each particle as N→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\rightarrow \infty $$\end{document}. These results include a generalization to weighted Riesz potentials with external field. Such interactions offer an appealing alternative to other approaches for reducing the computational complexity of an N-body interaction. We find the first-order term of the large N asymptotics and characterize the limiting distribution of the minimizers. We also obtain results about the Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Gamma $$\end{document}-convergence of such interactions, and describe minimizers on the 1-dimensional flat torus in the absence of external field, for all N.
引用
收藏
页码:333 / 383
页数:50
相关论文
共 50 条
  • [1] Asymptotics of k-nearest Neighbor Riesz Energies
    Hardin, Douglas P.
    Saff, Edward B.
    Vlasiuk, Oleksandr
    [J]. CONSTRUCTIVE APPROXIMATION, 2024, 59 (02) : 333 - 383
  • [2] Fuzzy Monotonic K-Nearest Neighbor Versus Monotonic Fuzzy K-Nearest Neighbor
    Zhu, Hong
    Wang, Xizhao
    Wang, Ran
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2022, 30 (09) : 3501 - 3513
  • [3] Comparative Analysis of K-Nearest Neighbor and Modified K-Nearest Neighbor Algorithm for Data Classification
    Okfalisa
    Mustakim
    Gazalba, Ikbal
    Reza, Nurul Gayatri Indah
    [J]. 2017 2ND INTERNATIONAL CONFERENCES ON INFORMATION TECHNOLOGY, INFORMATION SYSTEMS AND ELECTRICAL ENGINEERING (ICITISEE): OPPORTUNITIES AND CHALLENGES ON BIG DATA FUTURE INNOVATION, 2017, : 294 - 298
  • [4] Navigating K-Nearest Neighbor Graphs to Solve Nearest Neighbor Searches
    Chavez, Edgar
    Sadit Tellez, Eric
    [J]. ADVANCES IN PATTERN RECOGNITION, 2010, 6256 : 270 - 280
  • [5] MKNN: Modified K-Nearest Neighbor
    Parvin, Hamid
    Alizadeh, Hoscin
    Minael-Bidgoli, Behrouz
    [J]. WCECS 2008: WORLD CONGRESS ON ENGINEERING AND COMPUTER SCIENCE, 2008, : 831 - 834
  • [6] A GENERALIZED K-NEAREST NEIGHBOR RULE
    PATRICK, EA
    FISCHER, FP
    [J]. INFORMATION AND CONTROL, 1970, 16 (02): : 128 - &
  • [7] Improved k-nearest neighbor classification
    Wu, YQ
    Ianakiev, K
    Govindaraju, V
    [J]. PATTERN RECOGNITION, 2002, 35 (10) : 2311 - 2318
  • [8] A Centroid k-Nearest Neighbor Method
    Zhang, Qingjiu
    Sun, Shiliang
    [J]. ADVANCED DATA MINING AND APPLICATIONS, ADMA 2010, PT I, 2010, 6440 : 278 - 285
  • [9] Validation of k-Nearest Neighbor Classifiers
    Bax, Eric
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (05) : 3225 - 3234
  • [10] Analysis of the k-nearest neighbor classification
    Li, Jing
    Cheng, Ming
    [J]. INFORMATION SCIENCE AND MANAGEMENT ENGINEERING, VOLS 1-3, 2014, 46 : 1911 - 1917