Fabrication and characterization of multi-layer InAs/InGaAs quantum dot p-i-n GaAs solar cells grown on silicon substrates

被引:0
|
作者
M. Omri
A. Sayari
L. Sfaxi
机构
[1] King Abdulaziz University,DeanShip of Scientific Research (DSR)
[2] University of Jeddah,Department of Physics, Faculty of Science
[3] Université de Tunis El Manar,Faculté des Sciences de Tunis
[4] Unité de recherche Spectroscopie Raman UR13ES31,Laboratoire de Micro
[5] Université de Sousse,Optoélectroniques et des Nanostructures
来源
Applied Physics A | 2018年 / 124卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This paper reports on InAs/InGaAs quantum dot solar cells (QDSCs) deposited by molecular beam epitaxy (MBE) on (001) n-type silicon (n-Si) substrates. In-situ RHEED measurements show that InAs/InGaAs QDs SC has a high crystalline structure. The dislocation density in the active layer of the InAs/InGaAs QDSC and the lattice mismatch in the GaAs layer can be reduced by using an Si rough surface buffer layer (RSi). To show the effect of the QD layers, a reference SC with the same p-i-n structure as the InAs/InGaAs QDSC, but without InAs QDs, is also grown. The two SCs were studied by sepectroscopic ellipsometry (SE), in the 1–6 eV photon energy range, photoluminescence and photocurrent measurements. The optical constants of the two devices are determined in the photon energy range 1–6 eV from the SE data. The dominant features in the dielectric function spectra at ~ 3 and ~ 4.5 eV are attributed, respectively, to the E1 and E2 critical point structures of GaAs and InAs. The low-temperature photoluminescence spectrum of the InAs/InGaAs QDSC shows ground-state emissions, respectively, from the relatively small QDs near 1081 nm and from the large QDs near 1126 nm. Photocurrent measurements confirm the improved absorption performance (up to 1200 nm) of the InAs QDs SC which is ascribed to the optical absorption from the InAs/InGaAs QDs and the Si substrate as demonstrated by SE and photoluminescence measurements.
引用
收藏
相关论文
共 50 条
  • [1] Fabrication and characterization of multi-layer InAs/InGaAs quantum dot p-i-n GaAs solar cells grown on silicon substrates
    Omri, M.
    Sayari, A.
    Sfaxi, L.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2018, 124 (01):
  • [2] Defect Characterization of InAs/InGaAs Quantum Dot p-i-n Photodetector Grown on GaAs-on-V-Grooved-Si Substrate
    Huang, Jian
    Wan, Yating
    Jung, Daehwan
    Norman, Justin
    Shang, Chen
    Li, Qiang
    Lau, Kei May
    Gossard, Arthur C.
    Bowers, John E.
    Chen, Baile
    ACS PHOTONICS, 2019, 6 (05) : 1100 - 1105
  • [3] Quantum-dot-induced optical transition enhancement in InAs quantum-dot-embedded p-i-n GaAs solar cells
    Shang, X. -J.
    He, J. -F.
    Li, M. -F.
    Zhan, F.
    Ni, H. -Q.
    Niu, Z. -C.
    Pettersson, H.
    Fu, Y.
    APPLIED PHYSICS LETTERS, 2011, 99 (11)
  • [4] Towards InAs/InGaAs/GaAs Quantum Dot Solar Cells Directly Grown on Si Substrate
    Azeza, Bilel
    Alouane, Mohamed Helmi Hadj
    Ilahi, Bouraoui
    Patriarche, Gilles
    Sfaxi, Larbi
    Fouzri, Afif
    Maaref, Hassen
    M'ghaieth, Ridha
    MATERIALS, 2015, 8 (07) : 4544 - 4552
  • [5] An ultrafast multi-layer Graphene/InGaAs/InAlAs/InAs P-I-N photodetector with 100 GHz bandwidth
    Khaouani, M.
    Bencherif, H.
    Kourdi, Z.
    Dehimi, L.
    Hamdoune, A.
    Abdi, M. A.
    OPTIK, 2021, 227
  • [6] Impact of silicon quantum dot super lattice and quantum well structure as intermediate layer on p-i-n silicon solar cells
    Rahman, Mohammad Maksudur
    Lee, Ming-Yi
    Tsai, Yi-Chia
    Higo, Akio
    Sekhar, Halubai
    Igarashi, Makoto
    Syazwan, Mohd Erman
    Hoshi, Yusuke
    Sawano, Kentarou
    Usami, Noritaka
    Li, Yiming
    Samukawa, Seiji
    PROGRESS IN PHOTOVOLTAICS, 2016, 24 (06): : 774 - 780
  • [7] Analyzing carrier escape mechanisms in InAs/GaAs quantum dot p-i-n junction photovoltaic cells
    Sellers, D. G.
    Polly, S.
    Hubbard, S. M.
    Doty, M. F.
    APPLIED PHYSICS LETTERS, 2014, 104 (22)
  • [8] p-i-n Heterojunction Solar Cells with a Colloidal Quantum-Dot Absorber Layer
    Ko, Dong-Kyun
    Brown, Patrick R.
    Bawendi, Moungi G.
    Bulovic, Vladimir
    ADVANCED MATERIALS, 2014, 26 (28) : 4845 - +
  • [9] Mechanism of IR Photoresponse in Nanopatterned InAs/GaAs Quantum Dot p-i-n Photodiodes
    de Souza, Christina F.
    Alizadeh, Azar
    Nair, Selvakumar
    Saveliev, Igor
    Blumin, Marina
    Ruda, Harry E.
    Hays, David C.
    Watkins, Vicki H.
    Conway, Ken R.
    Braunstein, Edit
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 2010, 46 (05) : 832 - 836
  • [10] InGaAs and GaAs quantum dot solar cells grown by droplet epitaxy
    Yu, Peng
    Wu, Jiang
    Gao, Lei
    Liu, Huiyun
    Wang, Zhiming
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2017, 161 : 377 - 381