Apollonian circle packings: Number theory II. Spherical and hyperbolic packings

被引:0
|
作者
Nicholas Eriksson
Jeffrey C. Lagarias
机构
[1] University of Chicago,
[2] University of Michigan,undefined
来源
The Ramanujan Journal | 2007年 / 14卷
关键词
Circle packings; Apollonian circles; Diophantine equations; Lorentz group; 11H55;
D O I
暂无
中图分类号
学科分类号
摘要
Apollonian circle packings arise by repeatedly filling the interstices between mutually tangent circles with further tangent circles. In Euclidean space it is possible for every circle in such a packing to have integer radius of curvature, and we call such a packing an integral Apollonian circle packing. There are infinitely many different integral packings; these were studied in Part I (J. Number Theory 100, 1–45, 2003). Integral circle packings also exist in spherical and hyperbolic space, provided a suitable definition of curvature is used and again there are an infinite number of different integral packings. This paper studies number-theoretic properties of such packings. This amounts to studying the orbits of a particular subgroup \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal{A}}$\end{document} of the group of integral automorphs of the indefinite quaternary quadratic form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Q_{{\mathcal{D}}}(w,x,y,z)=2(w^{2}+x^{2}+y^{2}+z^{2})-(w+x+y+z)^{2}$\end{document} . This subgroup, called the Apollonian group, acts on integer solutions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Q_{{\mathcal{D}}}(w,x,y,z)=k$\end{document} . This paper gives a reduction theory for orbits of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal{A}}$\end{document} acting on integer solutions to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Q_{{\mathcal{D}}}(w,x,y,z)=k$\end{document} valid for all integer k. It also classifies orbits for all k≡0 (mod 4) in terms of an extra parameter n and an auxiliary class group (depending on n and k), and studies congruence conditions on integers in a given orbit.
引用
收藏
页码:437 / 469
页数:32
相关论文
共 50 条
  • [1] Apollonian circle packings: Number theory II. Spherical and hyperbolic packings
    Eriksson, Nicholas
    Lagarias, Jeffrey C.
    RAMANUJAN JOURNAL, 2007, 14 (03): : 437 - 469
  • [2] Apollonian circle packings: number theory
    Graham, RL
    Lagarias, JC
    Mallows, CL
    Wilks, AR
    Yan, CH
    JOURNAL OF NUMBER THEORY, 2003, 100 (01) : 1 - 45
  • [3] Apollonian circle packings: dynamics and number theory
    Hee Oh
    Japanese Journal of Mathematics, 2014, 9 : 69 - 97
  • [4] Apollonian circle packings: Geometry and group theory II. Super-Apollonian group and integral packings
    Graham, RL
    Lagarias, JC
    Mallows, CL
    Wilks, AR
    Yan, CH
    DISCRETE & COMPUTATIONAL GEOMETRY, 2006, 35 (01) : 1 - 36
  • [5] Apollonian Circle Packings: Geometry and Group Theory II. Super-Apollonian Group and Integral Packings
    Ronald L. Graham
    Jeffrey C. Lagarias
    Colin L. Mallows
    Allan R. Wilks
    Catherine H. Yan
    Discrete & Computational Geometry, 2006, 35 : 1 - 36
  • [6] Apollonian circle packings: dynamics and number theory
    Oh, Hee
    JAPANESE JOURNAL OF MATHEMATICS, 2014, 9 (01): : 69 - 97
  • [7] Apollonian Circle Packings
    Pollicott, Mark
    FRACTAL GEOMETRY AND STOCHASTICS V, 2015, 70 : 121 - 142
  • [8] On integral Apollonian circle packings
    Northshield, S.
    JOURNAL OF NUMBER THEORY, 2006, 119 (02) : 171 - 193
  • [9] APOLLONIAN PACKINGS AND HYPERBOLIC GEOMETRY
    ISHIDA, M
    KOJIMA, S
    GEOMETRIAE DEDICATA, 1992, 43 (03) : 265 - 283
  • [10] APOLLONIAN CIRCLE PACKINGS AND CLOSED HOROSPHERES ON HYPERBOLIC 3-MANIFOLDS
    Kontorovich, Alex
    Oh, Hee
    Shah, Nimish
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 24 (03) : 603 - 648