Apollonian circle packings arise by repeatedly filling the interstices between mutually tangent circles with further tangent circles. In Euclidean space it is possible for every circle in such a packing to have integer radius of curvature, and we call such a packing an integral Apollonian circle packing. There are infinitely many different integral packings; these were studied in Part I (J. Number Theory 100, 1–45, 2003). Integral circle packings also exist in spherical and hyperbolic space, provided a suitable definition of curvature is used and again there are an infinite number of different integral packings. This paper studies number-theoretic properties of such packings. This amounts to studying the orbits of a particular subgroup
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathcal{A}}$\end{document}
of the group of integral automorphs of the indefinite quaternary quadratic form
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$Q_{{\mathcal{D}}}(w,x,y,z)=2(w^{2}+x^{2}+y^{2}+z^{2})-(w+x+y+z)^{2}$\end{document}
. This subgroup, called the Apollonian group, acts on integer solutions
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$Q_{{\mathcal{D}}}(w,x,y,z)=k$\end{document}
. This paper gives a reduction theory for orbits of
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathcal{A}}$\end{document}
acting on integer solutions to
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$Q_{{\mathcal{D}}}(w,x,y,z)=k$\end{document}
valid for all integer k. It also classifies orbits for all k≡0 (mod 4) in terms of an extra parameter n and an auxiliary class group (depending on n and k), and studies congruence conditions on integers in a given orbit.