Monotonicity formulas for the first eigenvalue of the weighted p-Laplacian under the Ricci-harmonic flow

被引:0
|
作者
Abimbola Abolarinwa
Olukayode Adebimpe
Emmanuel A. Bakare
机构
[1] Landmark University,Department of Physical Sciences
[2] Federal University of Oye,Department of Mathematics
[3] Ekiti State,undefined
[4] Nigeria,undefined
关键词
Ricci harmonic flow; Laplace-Beltrami operator; Eigenvalue; Monotonicity; Ricci solitons; 53C21; 53C44; 58C40;
D O I
暂无
中图分类号
学科分类号
摘要
Let Δp,ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta _{p,\phi }$\end{document} be the weighted p-Laplacian defined on a smooth metric measure space. We study the evolution and monotonicity formulas for the first eigenvalue, λ1=λ(Δp,ϕ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda _{1}=\lambda (\Delta _{p,\phi })$\end{document}, of Δp,ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta _{p,\phi }$\end{document} under the Ricci-harmonic flow. We derive some monotonic quantities involving the first eigenvalue, and as a consequence, this shows that λ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda _{1}$\end{document} is monotonically nondecreasing and almost everywhere differentiable along the flow existence.
引用
收藏
相关论文
共 50 条