Time asymptotics for solutions of the Burgers equation with a periodic force

被引:0
|
作者
Werner Kirsch
Almut Kutzelnigg
机构
[1] Fakultät für Mathematik,
[2] Ruhr-Universität Bochum,undefined
[3] D-44780 Bochum,undefined
[4] Germany (e-mail: werner@mathphys.ruhr-uni-bochum.de),undefined
来源
Mathematische Zeitschrift | 1999年 / 232卷
关键词
Initial Data; Asymptotic Behaviour; Analytic Approach; Spectral Theory; Burger Equation;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Burgers equation with a periodic force \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\frac{\partial}{\partial t}u+u\cdot\nabla u=\frac12\Delta u+\nabla V(x)$\end{document} which presents a simplified model for turbulence. We are interested in the asymptotic behaviour of solutions for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $t\to\infty$\end{document}. This problem has been studied by Sinai who uses a probabilistic and very technical approach. Using methods from spectral theory we get similar results. This functional analytic approach gives an easier proof. For certain initial data (periodic or some random perturbations of those) we show time-convergence towards a deterministic periodic limit solution related to the ground state of a certain Schrödinger operator.
引用
收藏
页码:691 / 705
页数:14
相关论文
共 50 条