Fast second-order time two-mesh mixed finite element method for a nonlinear distributed-order sub-diffusion model

被引:0
|
作者
Cao Wen
Yang Liu
Baoli Yin
Hong Li
Jinfeng Wang
机构
[1] Inner Mongolia University,School of Mathematical Sciences
[2] Inner Mongolia University of Finance and Economics,School of Statistics and Mathematics
来源
Numerical Algorithms | 2021年 / 88卷
关键词
Time two-mesh algorithm; -Galerkin mixed finite element method; Crank-Nicolson formula; Nonlinear distributed-order sub-diffusion model; Stability and a priori error analysis;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, a time two-mesh (TT-M) algorithm combined with the H1-Galerkin mixed finite element (FE) method is introduced to numerically solve the nonlinear distributed-order sub-diffusion model, which is faster than the H1-Galerkin mixed FE method. The Crank-Nicolson scheme with TT-M algorithm is used to discretize the temporal direction at time tn+12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t_{n+\frac {1}{2}}$\end{document}, the FBN-𝜃 formula is developed to approximate the distributed-order derivative, and the H1-Galerkin mixed FE method is used to approximate the spatial direction. TT-M mixed element algorithm mainly covers three steps: first, the mixed finite element solution of the nonlinear coupled system on the time coarse mesh ΔtC is calculated; next, based on the numerical solution obtained in the first step, the numerical solution of the nonlinear coupled system on time fine mesh ΔtF is obtained by using Lagrange’s interpolation formula; finally, the numerical solution of the linearized system on time fine mesh ΔtF is solved by using the results in the second step. The existence and uniqueness of the solution for our numerical scheme are shown. Moreover, the stability and a priori error estimate are analyzed in detail. Furthermore, numerical examples with smooth and nonsmooth solutions are given to validate our method.
引用
收藏
页码:523 / 553
页数:30
相关论文
共 50 条
  • [1] Fast second-order time two-mesh mixed finite element method for a nonlinear distributed-order sub-diffusion model
    Wen, Cao
    Liu, Yang
    Yin, Baoli
    Li, Hong
    Wang, Jinfeng
    NUMERICAL ALGORITHMS, 2021, 88 (02) : 523 - 553
  • [2] Unconditionally optimal time two-mesh mixed finite element algorithm for a nonlinear fourth-order distributed-order time fractional diffusion equation
    Wen, Cao
    Wang, Jinfeng
    Liu, Yang
    Li, Hong
    Fang, Zhichao
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 460
  • [3] Two temporal second-order H1-Galerkin mixed finite element schemes for distributed-order fractional sub-diffusion equations
    Li, Xiaoli
    Rui, Hongxing
    NUMERICAL ALGORITHMS, 2018, 79 (04) : 1107 - 1130
  • [4] Two temporal second-order H1-Galerkin mixed finite element schemes for distributed-order fractional sub-diffusion equations
    Xiaoli Li
    Hongxing Rui
    Numerical Algorithms, 2018, 79 : 1107 - 1130
  • [5] A Galerkin finite element method for the modified distributed-order anomalous sub-diffusion equation
    Li, Lang
    Liu, Fawang
    Feng, Libo
    Turner, Ian
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 368
  • [6] A two-grid ADI finite element approximation for a nonlinear distributed-order fractional sub-diffusion equation
    Hou, Yaxin
    Wen, Cao
    Liu, Yang
    Li, Hong
    NETWORKS AND HETEROGENEOUS MEDIA, 2023, 18 (02) : 855 - 876
  • [7] Some Second-Order σ Schemes Combined with an H1-Galerkin MFE Method for a Nonlinear Distributed-Order Sub-Diffusion Equation
    Hou, Yaxin
    Wen, Cao
    Li, Hong
    Liu, Yang
    Fang, Zhichao
    Yang, Yining
    MATHEMATICS, 2020, 8 (02)
  • [8] Mixed element algorithm based on a second-order time approximation scheme for a two-dimensional nonlinear time fractional coupled sub-diffusion model
    Ruihan Feng
    Yang Liu
    Yaxin Hou
    Hong Li
    Zhichao Fang
    Engineering with Computers, 2022, 38 : 51 - 68
  • [9] Mixed element algorithm based on a second-order time approximation scheme for a two-dimensional nonlinear time fractional coupled sub-diffusion model
    Feng, Ruihan
    Liu, Yang
    Hou, Yaxin
    Li, Hong
    Fang, Zhichao
    ENGINEERING WITH COMPUTERS, 2022, 38 (01) : 51 - 68
  • [10] A distributed-order time fractional derivative model for simulating bimodal sub-diffusion in heterogeneous media
    Yin, Maosheng
    Ma, Rui
    Zhang, Yong
    Wei, Song
    Tick, Geoffrey R.
    Wang, Jiaqi
    Sun, Ziyong
    Sun, Hongguang
    Zheng, Chunmiao
    JOURNAL OF HYDROLOGY, 2020, 591 (591)