On the Power of Pearson’s Test under Local Alternatives in Autoregression with Outliers
被引:0
|
作者:
M. V. Boldin
论文数: 0引用数: 0
h-index: 0
机构:Moscow State Lomonosov Univ.,Dept. of Mech. and Math.
M. V. Boldin
机构:
[1] Moscow State Lomonosov Univ.,Dept. of Mech. and Math.
来源:
Mathematical Methods of Statistics
|
2019年
/
28卷
关键词:
autoregression;
outliers;
residuals;
empirical distribution function;
Pearson’s chi-square test;
robustness;
local alternatives;
primary 62G10;
secondary 62M10;
62G30;
62G35;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We consider a stationary linear AR(p) model with contamination (gross errors in the observations). The autoregression parameters are unknown, as well as the distribution of innovations. Based on the residuals from the parameter estimates, an analog of the empirical distribution function is defined and a test of Pearson’s chi-square type is constructed for testing hypotheses on the distribution of innovations. We obtain the asymptotic power of this test under local alternatives and establish its qualitative robustness under the hypothesis and alternatives.
机构:
Univ Quebec Trois Rivieres, Dept Math & Informat, Trois Rivieres, PQ G9A 5H7, CanadaUniv Quebec Trois Rivieres, Dept Math & Informat, Trois Rivieres, PQ G9A 5H7, Canada
Quessy, Jean-Francois
Mailhot, Melina
论文数: 0引用数: 0
h-index: 0
机构:
Univ Laval, Ecole Actuariat, Quebec City, PQ G1V 0A6, CanadaUniv Quebec Trois Rivieres, Dept Math & Informat, Trois Rivieres, PQ G9A 5H7, Canada