Comparative Effects of Individual and Consortia Plant Growth Promoting Bacteria on Physiological and Enzymatic Mechanisms to Confer Drought Tolerance in Maize (Zea mays L.)

被引:0
|
作者
Muhammad Saleem
Fahim Nawaz
Muhammad Baqir Hussain
Rao Muhammad Ikram
机构
[1] MNS-University of Agriculture,Department of Agronomy
[2] University of Hohenheim,Department of Nutritional Crop Physiology (340 h)
[3] MNS-University of Agriculture,Department of Soil and Environmental Sciences
关键词
Bacterial inoculants; Microbial consortia; Drought; Photosynthetic activity; Antioxidant machinery;
D O I
暂无
中图分类号
学科分类号
摘要
Mitigation strategies based on plant–microbe interactions to increase the performance of plants under water-deficit conditions are well documented. However, little is known about a suitable consortium of bacterial inoculants and underlying physiological and enzymatic events to improve drought tolerance in maize. We performed laboratory and pot experiments to understand the synergistic interactions among plant growth-promoting bacteria to alleviate the drought-induced damages in maize. Initially, ten bacterial strains were evaluated for their osmotic stress tolerance capacity by growing them in a media containing 0, 10, 20, and 30% polyethylene glycol (PEG-6000). Also, the seeds of a drought tolerant (NK-6654) and sensitive (SD-626) maize cultivar were inoculated with these bacterial strains in the first pot experiment to determine their effects on the growth and physiological processes. Later, in the second pot experiment, the best performing inoculants were selected to study the individual and synergistic effects of bacterial inoculation to confer drought tolerance in maize. Our findings showed that the inoculation with tolerant strains resulted in higher photosynthetic activity (25–39%), maintenance of leaf water status (14–18%) and pigments (27–32%), and stimulation of antioxidant machinery (28–38%) than no inoculation in water-stressed maize seedlings. Moreover, the treatment with bacteria consortia further stimulated the drought protective mechanisms and resulted in higher efficiency of photosynthetic (47–61%) and antioxidant systems (42–62%) than the individual inoculants under water-deficit conditions. We conclude that the inoculation with microbial consortia regulates water uptake, photosynthetic performance, and stress metabolites to minimize drought-induced damages in maize.
引用
收藏
页码:3461 / 3476
页数:15
相关论文
共 50 条
  • [1] Comparative Effects of Individual and Consortia Plant Growth Promoting Bacteria on Physiological and Enzymatic Mechanisms to Confer Drought Tolerance in Maize (Zea mays L.)
    Saleem, Muhammad
    Nawaz, Fahim
    Hussain, Muhammad Baqir
    Ikram, Rao Muhammad
    JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION, 2021, 21 (04) : 3461 - 3476
  • [2] EFFECT OF PLANT GROWTH PROMOTING BACTERIA AND DROUGHT ON SPRING MAIZE (ZEA MAYS L.)
    Mubeen, Muhammad
    Bano, Asghari
    Ali, Barkat
    Ul Islam, Zia
    Ahmad, Ashfaq
    Hussain, Sajjad
    Fahad, Shah
    Nasim, Wajid
    PAKISTAN JOURNAL OF BOTANY, 2021, 53 (02) : 731 - 739
  • [3] Physiological markers for drought tolerance in maize (Zea mays L.)
    Zarco-Perelló, E
    González-Hernández, VA
    López-Peralta, MC
    Salinas-Moreno, Y
    AGROCIENCIA, 2005, 39 (05) : 517 - 528
  • [4] Amelioration of growth of maize (Zea mays L.) seedling using plant growth promoting bacteria
    Kaneriya, Jinesh P.
    Pattani, Vivek B.
    Joshi, Krishna
    Gandhi, Dhara
    Sanghvi, Gaurav
    PLANT SCIENCE TODAY, 2024, 11 (02): : 353 - 362
  • [5] EVALUATION OF DROUGHT TOLERANCE IN MAIZE (ZEA MAYS L.) USING PHYSIOLOGICAL INDICES
    Tahir, Saba
    Zafar, Sara
    Ashraf, M. Yasin
    Perveen, Shagufta
    Mahmood, Saqib
    PAKISTAN JOURNAL OF BOTANY, 2023, 55 (03) : 843 - 849
  • [6] Physiological and transcriptomic analyses of the effects of exogenous melatonin on drought tolerance in maize (Zea mays L.)
    Zhao, Chengfeng
    Yang, Mei
    Wu, Xi
    Wang, Yifan
    Zhang, Renhe
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2021, 168 : 128 - 142
  • [7] Silicon-Mediated Growth, Physiological, Biochemical and Root Alterations to Confer Drought and Nickel Stress Tolerance in Maize (Zea mays L.)
    Humaira Ishaq
    Ejaz Ahmad Waraich
    Saddam Hussain
    Muhammad Ahmad
    Zahoor Ahmad
    Silicon, 2023, 15 : 6579 - 6589
  • [8] Silicon-Mediated Growth, Physiological, Biochemical and Root Alterations to Confer Drought and Nickel Stress Tolerance in Maize (Zea mays L.)
    Ishaq, Humaira
    Waraich, Ejaz Ahmad
    Hussain, Saddam
    Ahmad, Muhammad
    Ahmad, Zahoor
    Saifullah
    SILICON, 2023, 15 (15) : 6579 - 6589
  • [9] Role of Dominant Phyllosphere Bacteria with Plant Growth–Promoting Characteristics on Growth and Nutrition of Maize (Zea mays L.)
    Vahid Alah Jahandideh Mahjen Abadi
    Mozhgan Sepehri
    Hadi Asadi Rahmani
    Mehdi Zarei
    Abdolmajid Ronaghi
    Seyed Mohsen Taghavi
    Mahdieh Shamshiripour
    Journal of Soil Science and Plant Nutrition, 2020, 20 : 2348 - 2363
  • [10] High Temperature Stress Tolerance in Maize (Zea mays L.): Physiological and Molecular Mechanisms
    Yogesh Kumar Tiwari
    Sushil Kumar Yadav
    Journal of Plant Biology, 2019, 62 : 93 - 102