A Novel Rate-dependent Direct Inverse Preisach Model With Input Iteration for Hysteresis Compensation of Piezoelectric Actuators

被引:0
|
作者
Yutong Sun
Haifeng Ma
Yangmin Li
Zhanqiang Liu
Zhenhua Xiong
机构
[1] Shandong University,Key Laboratory of High Efficiency and Clean Mechanical Manufacture of MOE, School of Mechanical Engineering
[2] The Hong Kong Polytechnic University,Department of Industrial and Systems Engineering
[3] Tianjin University of Technology,Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control
[4] Shanghai Jiao Tong University,State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering
关键词
Hysteresis nonlinearity; inverse compensation; phase shift; Preisach model; rate-dependent;
D O I
暂无
中图分类号
学科分类号
摘要
This paper proposes the design and validation of a novel rate-dependent direct inverse Preisach model with input iteration (RDIPMII) dedicated to feedforward compensation of hysteresis nonlinearity in piezoelectric actuators (PEAs). Unlike existing similar works, the proposed RDIPMII avoids deriving the parameters of the inverse compensator from the hysteresis model, and could be directly employed as the inverse compensator. Furthermore, RDIPMII is capable of achieving rate-dependent inverse compensation while reducing the experimental burden in identifying models by the use of newly proposed data expression method (DEM). In addition, by integrating iterative learning control (ILC), RDIPMII accomplishes online input iteration to further suppress the hysteresis effect. The feasibility and efficiency of the presented scheme are demonstrated through experimental investigations conducted on a PEA.
引用
下载
收藏
页码:1277 / 1288
页数:11
相关论文
共 50 条
  • [1] A Novel Rate-dependent Direct Inverse Preisach Model With Input Iteration for Hysteresis Compensation of Piezoelectric Actuators
    Sun, Yutong
    Ma, Haifeng
    Li, Yangmin
    Liu, Zhanqiang
    Xiong, Zhenhua
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2024, 22 (04) : 1277 - 1288
  • [2] Modeling and High Dynamic Compensating the Rate-Dependent Hysteresis of Piezoelectric Actuators via a Novel Modified Inverse Preisach Model
    Xiao, Shunli
    Li, Yangmin
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2013, 21 (05) : 1549 - 1557
  • [3] Hysteresis Modeling for IPMC Actuators with Rate-Dependent Preisach Model
    Feng, Ying
    Kumkongkaew, Wirut
    Du, Juan
    Rakheja, Subhash
    Su, Chun-Yi
    2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2014, : 1549 - 1554
  • [4] A hybrid model for rate-dependent hysteresis in piezoelectric actuators
    Zhang, Xinliang
    Tan, Yonghong
    SENSORS AND ACTUATORS A-PHYSICAL, 2010, 157 (01) : 54 - 60
  • [5] Inverse compensation for hysteresis in piezoelectric actuator using an asymmetric rate-dependent model
    Li, Wei
    Chen, Xuedong
    Li, Zilong
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2013, 84 (11):
  • [6] Modelling and compensation of rate-dependent hysteresis in piezoelectric actuators based on a modified Madelung model
    Li, Rui
    Cao, Kairui
    Li, Zekun
    ELECTRONICS LETTERS, 2024, 60 (18)
  • [7] Neural Model of Rate-Dependent Hysteresis In Piezoelectric Actuators Based on Expanded Input Space with Rate-Dependent Hysteretic Operator
    Zhang, Xinlian
    Tan, Yonghong
    2009 IEEE CONTROL APPLICATIONS CCA & INTELLIGENT CONTROL (ISIC), VOLS 1-3, 2009, : 1804 - 1808
  • [8] A Model Based Compensator for Rate-Dependent Hysteresis in Piezoelectric Actuators
    Zhang, Xinliang
    Tan, Yonghong
    Dong, Ruili
    Xie, Yangqiu
    2010 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM), 2010,
  • [9] Modeling rate-dependent hysteresis in piezoelectric actuators
    Ang, WT
    Garmón, FA
    Khosla, PK
    Riviere, CN
    IROS 2003: PROCEEDINGS OF THE 2003 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-4, 2003, : 1975 - 1980
  • [10] Modeling of Rate-dependent Hysteresis in Piezoelectric Actuators
    Deng, Liang
    Tan, Yonghong
    2008 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS, VOLS 1 AND 2, 2008, : 54 - +