In this article, we construct the C⊗γμC\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$C \otimes \gamma _\mu C$$\end{document} and Cγ5⊗γ5γμC\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$C\gamma _5 \otimes \gamma _5\gamma _\mu C$$\end{document} type currents to interpolate the vector tetraquark states, then carry out the operator product expansion up to the vacuum condensates of dimension-10 in a consistent way, and obtain four QCD sum rules. In calculations, we use the formula μ=MY2-(2Mc)2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mu =\sqrt{M^2_{Y}-(2{\mathbb {M}}_c)^2}$$\end{document} to determine the optimal energy scales of the QCD spectral densities, moreover, we take the experimental values of the masses of the Y(4260 / 4220), Y(4360 / 4320), Y(4390) and Y(4660 / 4630) as input parameters and fit the pole residues to reproduce the correlation functions at the QCD side. The numerical results support assigning the Y(4660 / 4630) to be the C⊗γμC\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$C \otimes \gamma _\mu C$$\end{document} type vector tetraquark state cc¯ss¯\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$c\bar{c}s\bar{s}$$\end{document}, assigning the Y(4360 / 4320) to be Cγ5⊗γ5γμC\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$C\gamma _5 \otimes \gamma _5\gamma _\mu C$$\end{document} type vector tetraquark state cc¯qq¯\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$c\bar{c}q\bar{q}$$\end{document}, and disfavor assigning the Y(4260 / 4220) and Y(4390) to be the pure vector tetraquark states.