Trackable and scalable LC-MS metabolomics data processing using asari

被引:0
|
作者
Shuzhao Li
Amnah Siddiqa
Maheshwor Thapa
Yuanye Chi
Shujian Zheng
机构
[1] Jackson Laboratory for Genomic Medicine,
[2] University of Connecticut School of Medicine,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Significant challenges remain in the computational processing of data from liquid chomratography-mass spectrometry (LC-MS)-based metabolomic experiments into metabolite features. In this study, we examine the issues of provenance and reproducibility using the current software tools. Inconsistency among the tools examined is attributed to the deficiencies of mass alignment and controls of feature quality. To address these issues, we develop the open-source software tool asari for LC-MS metabolomics data processing. Asari is designed with a set of specific algorithmic framework and data structures, and all steps are explicitly trackable. Asari compares favorably to other tools in feature detection and quantification. It offers substantial improvement in computational performance over current tools, and it is highly scalable.
引用
收藏
相关论文
共 50 条
  • [1] Trackable and scalable LC-MS metabolomics data processing using asari
    Li, Shuzhao
    Siddiqa, Amnah
    Thapa, Maheshwor
    Chi, Yuanye
    Zheng, Shujian
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [2] MassCascade: Visual Programming for LC-MS Data Processing in Metabolomics
    Beisken, Stephan
    Earll, Mark
    Portwood, David
    Seymour, Mark
    Steinbeck, Christoph
    MOLECULAR INFORMATICS, 2014, 33 (04) : 307 - 310
  • [3] Strategy for Optimizing LC-MS Data Processing in Metabolomics: A Design of Experiments Approach
    Eliasson, Mattias
    Rannar, Stefan
    Madsen, Rasmus
    Donten, Magdalena A.
    Marsden-Edwards, Emma
    Moritz, Thomas
    Shockcor, John P.
    Johansson, Erik
    Trygg, Johan
    ANALYTICAL CHEMISTRY, 2012, 84 (15) : 6869 - 6876
  • [4] Simulated LC-MS Data Set for Assessing the Metabolomics Data Processing Pipeline Implemented into MVAPACK
    Jurich, Christopher P.
    Jeppesen, Micah J.
    Sakallioglu, Isin T.
    Leite, Aline De Lima
    Yesselman, Joseph D.
    Powers, Robert
    ANALYTICAL CHEMISTRY, 2024, 96 (32) : 12943 - 12956
  • [5] Algorithms and tools for the preprocessing of LC-MS metabolomics data
    Castillo, Sandra
    Gopalacharyulu, Peddinti
    Yetukuri, Laxman
    Oresic, Matej
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2011, 108 (01) : 23 - 32
  • [6] Filtering procedures for untargeted LC-MS metabolomics data
    Schiffman, Courtney
    Petrick, Lauren
    Perttula, Kelsi
    Yano, Yukiko
    Carlsson, Henrik
    Whitehead, Todd
    Metayer, Catherine
    Hayes, Josie
    Rappaport, Stephen
    Dudoit, Sandrine
    BMC BIOINFORMATICS, 2019, 20 (1)
  • [7] Filtering procedures for untargeted LC-MS metabolomics data
    Courtney Schiffman
    Lauren Petrick
    Kelsi Perttula
    Yukiko Yano
    Henrik Carlsson
    Todd Whitehead
    Catherine Metayer
    Josie Hayes
    Stephen Rappaport
    Sandrine Dudoit
    BMC Bioinformatics, 20
  • [8] With Guide of Spike-in Experiment for Optimizing Workflow of LC-MS data Processing in Metabolomics
    Yan, Bing-peng
    Cao, Chun-mei
    Hou, Jin-jun
    Bi, Qi-rui
    Yang, Min
    Qi, Peng
    Shi, Xiao-jian
    Wang, Jian-wei
    Wu, Wan-ying
    Guo, De-an
    NATURAL PRODUCT COMMUNICATIONS, 2017, 12 (08) : 1295 - 1300
  • [9] Targeted Metabolomics Using LC-MS in Neurospora crassa
    Carrillo, Alexander J.
    Halilovic, Lida
    Hur, Manhoi
    Kirkwood, Jay S.
    Borkovich, Katherine A.
    CURRENT PROTOCOLS, 2022, 2 (05):
  • [10] An approach for feature selection with data modelling in LC-MS metabolomics
    Plyushchenko, Ivan
    Shakhmatov, Dmitry
    Bolotnik, Timofey
    Baygildiev, Timur
    Nesterenko, Pavel N.
    Rodin, Igor
    ANALYTICAL METHODS, 2020, 12 (28) : 3582 - 3591