Chain conditions on commutative monoids

被引:0
|
作者
Bijan Davvaz
Zahra Nazemian
机构
[1] Yazd University,Department of Mathematics
[2] Institute for Research in Fundamental Sciences (IPM),School of Mathematics
来源
Semigroup Forum | 2020年 / 100卷
关键词
Semigroup; Monoid; Iso-DC; Iso-AC;
D O I
暂无
中图分类号
学科分类号
摘要
We consider commutative monoids with some kinds of isomorphism condition on their ideals. We say that a monoid S has isomorphism condition on its ascending chains of ideals, if for every ascending chain I1⊆I2⊆⋯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_1 \subseteq I_2 \subseteq \cdots $$\end{document} of ideals of S, there exists n such that Ii≅In\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_i \cong I_n $$\end{document}, as S-acts, for every i≥n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i \ge n$$\end{document}. Then S for short is called Iso-AC monoid. Dually, the concept of Iso-DC is defined for monoids by isomorphism condition on descending chains of ideals. We prove that if a monoid S is Iso-DC, then it has only finitely many non-isomorphic isosimple ideals and the union of all isosimple ideals is an essential ideal of S. If a monoid S is Iso-AC or a reduced Iso-DC, then it cannot contain a zero-disjoint union of infinitely many non-zero ideals. If S=S1×⋯×Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S= S_1 \times \cdots \times S_n$$\end{document} is a finite product of monids such that each Si\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_i$$\end{document} is isosimple, then S may not be Iso-DC but it is a noetherian S-act and so an Iso-AC monoid.
引用
收藏
页码:732 / 742
页数:10
相关论文
共 50 条
  • [1] Chain conditions on commutative monoids
    Davvaz, Bijan
    Nazemian, Zahra
    SEMIGROUP FORUM, 2020, 100 (03) : 732 - 742
  • [2] On presentations of commutative monoids
    Rosales, JC
    García-Sánchez, PA
    Urbano-Blanco, JM
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 1999, 9 (05) : 539 - 553
  • [3] Partial Commutative Monoids
    Wehrung, Friedrich
    REFINEMENT MONOIDS, EQUIDECOMPOSABILITY TYPES, AND BOOLEAN INVERSE SEMIGROUPS, 2017, 2188 : 23 - 69
  • [4] On morphisms of commutative monoids
    J. I. García García
    M. A. Moreno Frías
    Semigroup Forum, 2012, 84 : 333 - 341
  • [5] On morphisms of commutative monoids
    Garcia Garcia, J. I.
    Moreno Frias, M. A.
    SEMIGROUP FORUM, 2012, 84 (02) : 333 - 341
  • [6] ON COMMUTATIVE KLEENE MONOIDS
    RUPERT, CP
    SEMIGROUP FORUM, 1991, 43 (02) : 163 - 177
  • [7] Embedding Simple Commutative Monoids into Simple Refinement Monoids
    Friedrich Wehrung
    Semigroup Forum, 1998, 56 : 104 - 129
  • [8] Embedding simple commutative monoids into simple refinement monoids
    Wehrung, F
    SEMIGROUP FORUM, 1998, 56 (01) : 104 - 129
  • [9] RATIONAL SETS IN COMMUTATIVE MONOIDS
    EILENBERG, S
    SCHUTZENBERGER, MP
    JOURNAL OF ALGEBRA, 1969, 13 (02) : 173 - +
  • [10] Factorization theory in commutative monoids
    Geroldinger, Alfred
    Zhong, Qinghai
    SEMIGROUP FORUM, 2020, 100 (01) : 22 - 51