The Computational Complexity of Sandpiles

被引:0
|
作者
Cristopher Moore
Martin Nilsson
机构
[1] Santa Fe Institute,
[2] Chalmers Tekniska Högskola and University of Gothenburg,undefined
来源
Journal of Statistical Physics | 1999年 / 96卷
关键词
sandpiles; self-organized criticality; cellular automata; computational complexity; parallel computation; nonlinear systems; Boolean circuits; graph theory;
D O I
暂无
中图分类号
学科分类号
摘要
Given an initial distribution of sand in an Abelian sandpile, what final state does it relax to after all possible avalanches have taken place? In d≥3, we show that this problem is P-complete, so that explicit simulation of the system is almost certainly necessary. We also show that the problem of determining whether a sandpile state is recurrent is P-complete in d≥3, and briefly discuss the problem of constructing the identity. In d=1, we give two algorithms for predicting the sandpile on a lattice of size n, both faster than explicit simulation: a serial one that runs in time \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{O}$$ \end{document}(n log n), and a parallel one that runs in time \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{O}$$ \end{document}(log3n), i.e., the class NC3. The latter is based on a more general problem we call additive ranked generability. This leaves the two-dimensional case as an interesting open problem.
引用
收藏
页码:205 / 224
页数:19
相关论文
共 50 条
  • [1] The computational complexity of sandpiles
    Moore, C
    Nilsson, M
    JOURNAL OF STATISTICAL PHYSICS, 1999, 96 (1-2) : 205 - 224
  • [2] The computational complexity of one-dimensional sandpiles
    Miltersen, Peter Bro
    THEORY OF COMPUTING SYSTEMS, 2007, 41 (01) : 119 - 125
  • [3] The Computational Complexity of One-Dimensional Sandpiles
    Peter Bro Miltersen
    Theory of Computing Systems, 2007, 41 : 119 - 125
  • [4] The computational complexity of one-dimensional sandpiles
    Miltersen, PB
    NEW COMPUTATIONAL PARADIGMS, 2005, 3526 : 342 - 348
  • [5] Computational Complexity of the Avalanche Problem on One Dimensional Kadanoff Sandpiles
    Formenti, Enrico
    Perrot, Kevin
    Remila, Eric
    CELLULAR AUTOMATA AND DISCRETE COMPLEX SYSTEMS (AUTOMATA 2014), 2015, 8996 : 21 - 30
  • [6] Computational Complexity of the Avalanche Problem for One Dimensional Decreasing Sandpiles
    Formenti, Enrico
    Perrot, Kevin
    Remila, Eric
    JOURNAL OF CELLULAR AUTOMATA, 2018, 13 (03) : 215 - 228
  • [8] Freezing sandpiles and Boolean threshold networks: Equivalence and complexity
    Goles, Eric
    Montealegre, Pedro
    Perrot, Kevin
    ADVANCES IN APPLIED MATHEMATICS, 2021, 125
  • [9] Computational complexity and knowledge complexity
    Goldreich, O
    Ostrovsky, R
    Petrank, E
    SIAM JOURNAL ON COMPUTING, 1998, 27 (04) : 1116 - 1141
  • [10] Computational Complexity
    Tenreiro Machado, J. A.
    Lopes, Antonio M.
    ENTROPY, 2017, 19 (02):