An improved two-threshold quantum segmentation algorithm for NEQR image

被引:0
|
作者
Lu Wang
Zhiliang Deng
Wenjie Liu
机构
[1] Nanjing University of Information Science and Technology,School of Automation
[2] Nanjing University of Information Science and Technology,School of Computer and Software
关键词
Quantum image processing; Image segmentation; Two-threshold; Quantum comparator;
D O I
暂无
中图分类号
学科分类号
摘要
The quantum image segmentation algorithm is to divide a quantum image into several parts, but most of the existing algorithms use more quantum resource(qubit) or cannot process the complex image. In this paper, an improved two-threshold quantum segmentation algorithm for NEQR image is proposed, which can segment the complex gray-scale image into a clear ternary image by using fewer qubits and can be scaled to use n thresholds for n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n+1$$\end{document} segmentations. In addition, a feasible quantum comparator is designed to distinguish the gray-scale values with two thresholds, and then a scalable quantum circuit is designed to segment the NEQR image. For a 2n×2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${2^n} \!\times \! {2^n}$$\end{document} image with q gray-scale levels, the quantum cost of our algorithm can be reduced to 60q-6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q{-}6$$\end{document}, which is lower than other existing quantum algorithms and does not increase with the image’s size increases. The experiment on IBM Q demonstrates that our algorithm can effectively segment the image.
引用
收藏
相关论文
共 50 条
  • [1] An improved two-threshold quantum segmentation algorithm for NEQR image
    Wang, Lu
    Deng, Zhiliang
    Liu, Wenjie
    [J]. QUANTUM INFORMATION PROCESSING, 2022, 21 (08)
  • [2] A quantum segmentation algorithm based on local adaptive threshold for NEQR image
    Wang, Lu
    Liu, Wenjie
    [J]. MODERN PHYSICS LETTERS A, 2022, 37 (22)
  • [3] Improved dual-threshold quantum image segmentation algorithm and simulation
    Dong, Yumin
    Yan, Rui
    Mou, Dingkang
    Li, Feifei
    [J]. PHYSICA SCRIPTA, 2024, 99 (07)
  • [4] A QUANTUM SEGMENTATION ALGORITHM BASED ON BACKGROUND-DIFFERENCE METHOD FOR NEQR IMAGE
    Wang, Lu
    Liu, Wenjie
    Deng, Zhiliang
    [J]. QUANTUM INFORMATION & COMPUTATION, 2023, 23 (15-16) : 1291 - 1309
  • [5] Two-Threshold Semiconductor Quantum Well Lasers
    Sokolova, Z. N.
    Pikhtin, N. A.
    Asryan, L. V.
    [J]. 2018 INTERNATIONAL CONFERENCE LASER OPTICS (ICLO 2018), 2018, : 169 - 169
  • [6] Multilevel image threshold segmentation using an improved Bloch quantum artificial bee colony algorithm
    Huo, Fengcai
    Sun, Xueting
    Ren, Weijian
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (3-4) : 2447 - 2471
  • [7] Multilevel image threshold segmentation using an improved Bloch quantum artificial bee colony algorithm
    Fengcai Huo
    Xueting Sun
    Weijian Ren
    [J]. Multimedia Tools and Applications, 2020, 79 : 2447 - 2471
  • [8] Image Threshold Segmentation Based on An Improved Bee Colony Algorithm
    Huo Fengcai
    Wang Di
    Ren Weijian
    [J]. 2018 EIGHTH INTERNATIONAL CONFERENCE ON INSTRUMENTATION AND MEASUREMENT, COMPUTER, COMMUNICATION AND CONTROL (IMCCC 2018), 2018, : 1787 - 1790
  • [9] Threshold image segmentation based on improved sparrow search algorithm
    Dongmei Wu
    Chengzhi Yuan
    [J]. Multimedia Tools and Applications, 2022, 81 : 33513 - 33546
  • [10] Two Dimension Threshold Image Segmentation Based on Improved Artificial Fish-Swarm Algorithm
    Jiang Suhua
    Wang Dongdong
    Liu Chunqiang
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON CHEMICAL, MATERIAL AND FOOD ENGINEERING, 2015, 22 : 656 - 659