Remarks on Hilbert series of graded modules over polynomial rings

被引:0
|
作者
Jan Uliczka
机构
[1] Universität Osnabrück,Institut für Mathematik
来源
manuscripta mathematica | 2010年 / 132卷
关键词
13D40; 16W50;
D O I
暂无
中图分类号
学科分类号
摘要
In this article we discuss a result on formal Laurent series and some of its implications for Hilbert series of finitely generated graded modules over standard-graded polynomial rings: For any integer Laurent function of polynomial type with non-negative values the associated formal Laurent series can be written as a sum of rational functions of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{Q_j(t)}{(1-t)^j}}$$\end{document}, where the numerators are Laurent polynomials with non–negative integer coefficients. Hence any such series is the Hilbert series of some finitely generated graded module over a suitable polynomial ring \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}[X_1 , \ldots , X_n]}$$\end{document}. We give two further applications, namely an investigation of the maximal depth of a module with a given Hilbert series and a characterization of Laurent polynomials which may occur as numerator in the presentation of a Hilbert series as a rational function with a power of (1 − t) as denominator.
引用
收藏
页码:159 / 168
页数:9
相关论文
共 50 条