Weighted K-Stability for a Class of Non-compact Toric Fibrations

被引:0
|
作者
Charles Cifarelli
机构
[1] Université de Nantes,Département de Mathématiques
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study the weighted constant scalar curvature, a modified scalar curvature introduced by Lahdili (Proc Lond Math Soc 119(4):1065–1114, 2019) depending on weight functions (v,w)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(v, \, w)$$\end{document}, on non-compact semisimple principal toric fibrations. The latter notion is a generalization of the Calabi Ansatz originally defined by Apostolov et al. (J Differ Geom 68(2):277–345, 2004). This setup turns out to reduce the weighted cscK problem on the total space to a different weighted cscK problem on a fixed toric fiber M. We show that the natural analog of the weighted Futaki invariant of Lahdili (Proc Lond Math Soc 119(4):1065–1114, 2019) can under reasonable assumptions be interpreted on an unbounded polyhedron P⊂Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P \subset {\mathbb {R}}^n$$\end{document} associated to M. In particular, we fix a certain class W\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {W}}$$\end{document} of weights (v,w)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(v, \,w)$$\end{document} and prove that if M admits a weighted cscK metric, then P is K-stable, and we give examples of weights on C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}^2$$\end{document} for which the weighted Futaki invariant vanishes but do not admit (v,w)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(v,\, w)$$\end{document}-cscK metrics. Following Jubert (A Yau-Tian-Donaldson correspondence on a class of toric fibrations. arXiv:2108.12297, 2021), we introduce a weighted Mabuchi energy Mv,w\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {M}}_{v,w}$$\end{document} and show that the existence of a (v,w)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(v, \, w)$$\end{document}-cscK metric implies that it Mv,w\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {M}}_{v,w}$$\end{document} proper. The well-definedness of Mv,w\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {M}}_{v,w}$$\end{document} in this setting also allows us to prove a uniqueness result using the method of Guan (Math Res Lett 6:547–555, 1999). As an application, we show that weighted K-stability of the abstract fiber C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}$$\end{document} is sufficient for the existence of weighted cscK metrics on the total space of line bundles L→B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L \rightarrow B$$\end{document} over a compact Kähler base, extending the result in Lahdili (Proc Lond Math Soc 119(4):1065–1114, 2019) in the P1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {P}}^1$$\end{document}-bundles case. As a consequence, we recover a well-known existence result for shrinking Kähler–Ricci solitons (Feldman et al. in J Differ Geom 65(2):169–209, 2003; Futaki and Wang in Asian J Math 15:33–52, 2011; Li in On rotationally symmetric Kähler-Ricci solitons. arXiv:1004.4049, 2011). Finally, we give some interpretations in terms of asymptotic geometry.
引用
收藏
相关论文
共 50 条
  • [1] Weighted K-Stability for a Class of Non-compact Toric Fibrations
    Cifarelli, Charles
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (05)
  • [2] K-stability on toric manifolds
    Zhou, Bin
    Zhu, Xiaohua
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (09) : 3301 - 3307
  • [3] Non-Compact Symplectic Toric Manifolds
    Karshon, Yael
    Lerman, Eugene
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2015, 11
  • [4] K-STABILITY AND CANONICAL METRICS ON TORIC MANIFOLDS
    Wang, Xu-Jia
    Zhou, Bin
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2014, 9 (01): : 85 - 110
  • [5] On K-stability of Fano weighted hypersurfaces
    Sano, Taro
    Tasin, Luca
    ALGEBRAIC GEOMETRY, 2024, 11 (02): : 296 - 317
  • [6] Relative K-stability and modified K-energy on toric manifolds
    Zhou, Bin
    Zhu, Xiaohua
    ADVANCES IN MATHEMATICS, 2008, 219 (04) : 1327 - 1362
  • [7] Relative Ding and K-stability of toric Fano manifolds in low dimensions
    Yasufumi Nitta
    Shunsuke Saito
    Naoto Yotsutani
    European Journal of Mathematics, 2023, 9
  • [8] K-stability for varieties with a big anticanonical class
    Xu, Chenyang
    EPIJOURNAL DE GEOMETRIE ALGEBRIQUE, 2023, 2023
  • [9] Relative Ding and K-stability of toric Fano manifolds in low dimensions
    Nitta, Yasufumi
    Saito, Shunsuke
    Yotsutani, Naoto
    EUROPEAN JOURNAL OF MATHEMATICS, 2023, 9 (02)
  • [10] Weighted Entropy of a Flow on Non-compact Sets
    Jinghua Shen
    Leiye Xu
    Xiaomin Zhou
    Journal of Dynamics and Differential Equations, 2020, 32 : 181 - 203