Weighted Error Estimates for Finite Element Solutions of Variational Inequalities

被引:0
|
作者
Heribert Blum
Franz-Theo Suttmeier
机构
[1] Fachbereich Mathematik Lehrstuhl X Universität Dortmund Vogelpothsweg 87 D-44221 Dortmund Germany e-mail: Heribert.Blum@math.uni-dortmund.de e-mail: Franz-Theo.Suttmeier@math.uni-dortmund.de,
来源
Computing | 2000年 / 65卷
关键词
AMS Subject Classifications: 65N30, 65N15, 35J85.; Key Words: Contact problem, obstacle problem, a posteriori error estimate, variational inequality, finite element method, adaptivity.;
D O I
暂无
中图分类号
学科分类号
摘要
In this note the studies begun in Blum and Suttmeier (1999) on adaptive finite element discretisations for nonlinear problems described by variational inequalities are continued. Similar to the concept proposed, e.g., in Becker and Rannacher (1996) for variational equalities, weighted a posteriori estimates for controlling arbitrary functionals of the discretisation error are constructed by using a duality argument. Numerical results for the obstacle problem demonstrate the derived error bounds to be reliable and, used for an adaptive grid refinement strategy, to produce economical meshes.
引用
收藏
页码:119 / 134
页数:15
相关论文
共 50 条