Exponential sums involving Maass forms

被引:0
|
作者
Qingfeng Sun
Yuanying Wu
机构
[1] Shandong University,School of Mathematics and Statistics
[2] Shandong University,School of Mathematics
来源
Frontiers of Mathematics in China | 2014年 / 9卷
关键词
Fourier coefficients of Maass form; nonlinear exponential sum; number-theoretic function; 11F30; 11L07; 11N37;
D O I
暂无
中图分类号
学科分类号
摘要
We study the exponential sums involving Fourier coefficients of Maass forms and exponential functions of the form e(αnβ), where 0 ≠ α ∈ ℝ and 0 < β < 1. An asymptotic formula is proved for the nonlinear exponential sum ΣX<n⩽2Xλg(n)e(αnβ), when β = 1/2 and |α| is close to 2√q, q ∈ ℤ+, where λg(n) is the normalized n-th Fourier coefficient of a Maass cusp form for SL2(ℤ). The similar natures of the divisor function τ (n) and the representation function r(n) in the circle problem in nonlinear exponential sums of the above type are also studied.
引用
收藏
页码:1349 / 1366
页数:17
相关论文
共 50 条