In this paper, we consider the existence and nonexistence of positive solutions of degenerate elliptic systems \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\left\{ \begin{gathered} - \Delta _p u = f(x,u,v), in \Omega , \hfill \\ - \Delta _p u = g(x,u,v), in \Omega , \hfill \\ u = v = 0, on \partial \Omega , \hfill \\ \end{gathered} \right.$$
\end{document} where −Δp is the p-Laplace operator, p > 1 and Ω is a C1,α-domain in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\mathbb{R}^n $$
\end{document}. We prove an analogue of [7, 16] for the eigenvalue problem with \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$f(x,u,v) = {\lambda }_{1} v^{p - 1} ,{ }g(x,u,v) = {\lambda }_{2} u^{p - 1} $$
\end{document} and obtain a non-existence result of positive solutions for the general systems.