B-spline;
M-estimator;
Rate of convergence;
Single-index model;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
The single-index model is an important tool in multivariate nonparametric regression. This paper deals with M-estimators for the single-index model. Unlike the existing M-estimator for the single-index model, the unknown link function is approximated by B-spline and M-estimators for the parameter and the nonparametric component are obtained in one step. The proposed M-estimator of unknown function is shown to attain the convergence rate as that of the optimal global rate of convergence of estimators for nonparametric regression according to Stone (Ann Stat 8:1348–1360, 1980; Ann Stat 10:1040–1053, 1982), and the M-estimator of parameter is \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sqrt{n}$$\end{document}-consistent and asymptotically normal. A small sample simulation study showed that the M-estimators proposed in this paper are robust. An application to real data illustrates the estimator’s usefulness.