The Fusion Algebra of Bimodule Categories

被引:0
|
作者
Jürgen Fuchs
Ingo Runkel
Christoph Schweigert
机构
[1] Karlstads Universitet,Avdelning fysik
[2] King’s College London,Department of Mathematics
[3] Universität Hamburg,Schwerpunkt Algebra und Zahlentheorie, Organisationseinheit Mathematik
来源
关键词
Fusion algebra; Bimodule categories; Modular tensor categories; Complexified Grothendieck ring; 18D10; 18D35; 81T40;
D O I
暂无
中图分类号
学科分类号
摘要
We establish an algebra-isomorphism between the complexified Grothendieck ring \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{F}$\end{document} of certain bimodule categories over a modular tensor category and the endomorphism algebra of appropriate morphism spaces of those bimodule categories. This provides a purely categorical proof of a conjecture by Ostrik concerning the structure of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{F}$\end{document}. As a by-product we obtain a concrete expression for the structure constants of the Grothendieck ring of the bimodule category in terms of endomorphisms of the tensor unit of the underlying modular tensor category.
引用
收藏
页码:123 / 140
页数:17
相关论文
共 50 条
  • [1] The fusion algebra of bimodule categories
    Fuchs, Juergen
    Runkel, Ingo
    Schweigert, Christoph
    APPLIED CATEGORICAL STRUCTURES, 2008, 16 (1-2) : 123 - 140
  • [2] Invertible bimodule categories over the representation category of a Hopf algebra
    Femic, Bojana
    Mejia Castano, Adriana
    Mombelli, Martin
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2014, 218 (11) : 2096 - 2118
  • [3] A Trace for Bimodule Categories
    Fuchs, Jurgen
    Schaumann, Gregor
    Schweigert, Christoph
    APPLIED CATEGORICAL STRUCTURES, 2017, 25 (02) : 227 - 268
  • [4] A Trace for Bimodule Categories
    Jürgen Fuchs
    Gregor Schaumann
    Christoph Schweigert
    Applied Categorical Structures, 2017, 25 : 227 - 268
  • [5] Group action on bimodule categories
    Drozd, Yuriy A.
    ALGEBRA & DISCRETE MATHEMATICS, 2008, (03): : 50 - 68
  • [6] The Toeplitz algebra of a Hilbert bimodule
    Fowler, NJ
    Raeburn, I
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1999, 48 (01) : 155 - 181
  • [7] Bimodule resolution of a group algebra
    Generalov A.I.
    Ivanov S.O.
    Journal of Mathematical Sciences, 2009, 161 (4) : 537 - 541
  • [8] The C*-algebra of a Hilbert bimodule
    Doplicher, S
    Pinzari, C
    Zuccante, R
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1998, 1B (02): : 263 - 281
  • [9] DIMENSION OF TENSOR ALGEBRA OF A PROJECTIVE BIMODULE
    ROGANOV, YV
    MATHEMATICAL NOTES, 1975, 18 (5-6) : 1119 - 1123
  • [10] Invertible Bimodule Categories and Generalized Schur Orthogonality
    Bridgeman, Jacob C.
    Lootens, Laurens
    Verstraete, Frank
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 402 (03) : 2691 - 2714