We establish an algebra-isomorphism between the complexified Grothendieck ring \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{F}$\end{document} of certain bimodule categories over a modular tensor category and the endomorphism algebra of appropriate morphism spaces of those bimodule categories. This provides a purely categorical proof of a conjecture by Ostrik concerning the structure of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{F}$\end{document}. As a by-product we obtain a concrete expression for the structure constants of the Grothendieck ring of the bimodule category in terms of endomorphisms of the tensor unit of the underlying modular tensor category.