Two-scale modelling of micromorphic continuaA numerical homogenization scheme

被引:0
|
作者
Ralf Jänicke
Stefan Diebels
Hans-Georg Sehlhorst
Alexander Düster
机构
[1] Saarland University,Chair of Applied Mechanics
[2] Technische Universität Hamburg-Harburg,Numerische Strukturanalyse mit Anwendungen in der Schiffstechnik
来源
关键词
Multiscale materials; Size effects; Extended continua; Homogenization; Two-scale FEM; 46.05.+b; 46.15.-x;
D O I
暂无
中图分类号
学科分类号
摘要
According to their peculiar mechanical properties, the description of cellular materials is of high interest. Modelling aspects to be considered are, e.g. pronounced size depending boundary layer effects as well as a deformation-driven evolution of anisotropy or porosity. In the present contribution, we pay special attention to the description of size-dependent microtopological effects on the one hand. On the other hand, we focus on the relevance of extended continuum theories describing the local deformation state of microstructured materials. We, therefore, introduce a homogenization scheme for two-scale problems replacing a heterogeneous Cauchy continuum on the microscale by a homogeneous effective micromorphic continuum on the macroscale. The transitions between both scales are obtained by appropriate projection and homogenization rules which have to be derived, on the one hand, by kinematic assumptions, i.e. the minimization of the macroscopic displacement field, and, on the other hand, by energetic considerations, i.e. the evaluation of an extended Hill–Mandel condition.
引用
收藏
页码:297 / 315
页数:18
相关论文
共 50 条
  • [1] Two-scale modelling of micromorphic continua
    Jaenicke, Ralf
    Diebels, Stefan
    Sehlhorst, Hans-Georg
    Duester, Alexander
    [J]. CONTINUUM MECHANICS AND THERMODYNAMICS, 2009, 21 (04) : 297 - 315
  • [2] MICROMORPHIC TWO-SCALE MODELLING OF PERIODIC GRID STRUCTURES
    Jaenicke, Ralf
    Sehlhorst, Hans-Georg
    Duester, Alexander
    Diebels, Stefan
    [J]. INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, 2013, 11 (02) : 161 - 176
  • [3] A two-scale methodology on modelling surface topography by homogenization technique
    Han, Yanxiang
    Lu, Zeyu
    [J]. APPLIED MATHEMATICAL MODELLING, 2023, 120 : 115 - 131
  • [4] TWO-SCALE NUMERICAL HOMOGENIZATION OF THE CONSTITUTIVE PARAMETERS OF REACTIVE POWDER CONCRETE
    Denisiewicz, Arkadiusz
    Kuczma, Mieczyslaw
    [J]. INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, 2014, 12 (05) : 361 - 374
  • [5] Two-scale homogenization in the Heisenberg group
    Franchi, B
    Tesi, MC
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2002, 81 (06): : 495 - 532
  • [6] Two-scale FEM for homogenization problems
    Matache, AM
    Schwab, C
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2002, 36 (04): : 537 - 572
  • [7] Adaptive Two-Scale Nonlinear Homogenization
    Fan, Rong
    Yuan, Zheng
    Fish, Jacob
    [J]. INTERNATIONAL JOURNAL FOR COMPUTATIONAL METHODS IN ENGINEERING SCIENCE & MECHANICS, 2010, 11 (01): : 27 - 36
  • [8] Two-scale convergence and homogenization on BV(Ω)
    Amar, M
    [J]. ASYMPTOTIC ANALYSIS, 1998, 16 (01) : 65 - 84
  • [9] An introduction to the two-scale homogenization method for seismology
    Capdeville, Yann
    Cupillard, Paul
    Singh, Sneha
    [J]. MACHINE LEARNING IN GEOSCIENCES, 2020, 61 : 217 - 306
  • [10] Homogenization of Reynolds equation by two-scale convergence
    Wall, Peter
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 2007, 28 (03) : 363 - 374