Analysis of a Mixed DG Method for Stress-Velocity Formulation of the Stokes Equations

被引:0
|
作者
Lina Zhao
机构
[1] City University of Hong Kong,Department of Mathematics
来源
关键词
The Stokes equations; DG method; Pressure robustness; Strong symmetry; Stress-velocity formulation; Brinkman problem;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we propose and analyze a novel mixed DG scheme for stress-velocity formulation of the Stokes equations with arbitrary polynomial orders on simplicial meshes and the symmetry of stress is strongly imposed. The optimal convergence error estimates are proved for stress and velocity measured in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} errors. The primary difficulty is to prove L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} error of stress, and standard techniques will lead to sub-optimal convergence error estimates. As such, some new ingredients are adopted to recover the optimal convergence rates. The proposed scheme is also extended to solve the Brinkman problem, aiming to get a uniformly robust scheme for both the Stokes and Darcy limits. Finally, several numerical experiments are carried out to verify the performances of the proposed scheme. In particular, the numerical results demonstrate that the proposed scheme is robust with respect to the values of the viscosity.
引用
收藏
相关论文
共 50 条
  • [1] Analysis of a Mixed DG Method for Stress-Velocity Formulation of the Stokes Equations
    Zhao, Lina
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 92 (02)
  • [2] H (div) -conforming HDG methods for the stress-velocity formulation of the Stokes equations and the Navier-Stokes equations
    Qiu, Weifeng
    Zhao, Lina
    NUMERISCHE MATHEMATIK, 2024, 156 (04) : 1639 - 1678
  • [3] A New Mixed Method for the Stokes Equations Based on Stress-Velocity-Vorticity Formulation
    Penati, Mattia
    Miglio, Edie
    JOURNAL OF MATHEMATICAL STUDY, 2019, 52 (03): : 299 - 319
  • [4] Stress-Velocity Mixed Least-Squares FEMs for the Time-Dependent Incompressible Navier-Stokes Equations
    Schwarz, Alexander
    Nisters, Carina
    Averweg, Solveigh
    Schroeder, Joerg
    LARGE-SCALE SCIENTIFIC COMPUTING, LSSC 2017, 2018, 10665 : 137 - 144
  • [5] A mass conserving mixed stress formulation for the Stokes equations
    Gopalakrishnan, Jay
    Lederer, Philip L.
    Schoeberl, Joachim
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2020, 40 (03) : 1838 - 1874
  • [6] An augmented mixed finite element method for the vorticity-velocity-pressure formulation of the Stokes equations
    Anaya, Veronica
    Mora, David
    Ruiz-Baier, Ricardo
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2013, 267 : 261 - 274
  • [7] STAGGERED DG METHODS FOR THE PSEUDOSTRESS-VELOCITY FORMULATION OF THE STOKES EQUATIONS ON GENERAL MESHES
    Kim, Dohyun
    Zhao, Lina
    Park, Eun-Jae
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (04): : A2537 - A2560
  • [8] Analysis of DG approximations for Stokes problem based on velocity-pseudostress formulation
    Barrios, Tomas P.
    Bustinza, Rommel
    Sanchez, Felipe
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2017, 33 (05) : 1540 - 1564
  • [9] Efficient stress-velocity least-squares finite element formulations for the incompressible Navier-Stokes equations
    Nisters, Carina
    Schwarz, Alexander
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 341 : 333 - 359
  • [10] A new mixed finite element formulation and the MAC method for the Stokes equations
    Han, HD
    Wu, XN
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (02) : 560 - 571