Error bounds and gap functions for various variational type problems

被引:0
|
作者
Aviv Gibali
机构
[1] ORT Braude College,Department of Mathematics
[2] Jazan University,Department of Mathematics
关键词
Generalized multivalued mixed variational-hemivariational inequality problems; Gap function; Regularized gap function; Global error bounds; Semipermeability problem; 47J20; 49J40; 49J45; 74M10; 74M15;
D O I
暂无
中图分类号
学科分类号
摘要
In this work we study various gap functions for the generalized multivalued mixed variational-hemivariational inequality problems by using the (τM,σM)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\tau _{\mathscr {M}},\sigma _{\mathscr {M}})$$\end{document}-relaxed cocoercive mapping and Hausdorff Lipschitz continuity. Moreover, we establish global error bounds for such inequalities using the characteristic of the Clarke generalized gradient method. As application, we present a stationary nonsmooth semipermeability problem.
引用
收藏
相关论文
共 50 条