Nonconforming mixed finite element methods for linear elasticity using rectangular elements in two and three dimensions

被引:0
|
作者
S.-Y. Yi
机构
[1] Department of Mathematics,
[2] Purdue University,undefined
[3] West Lafayette,undefined
来源
CALCOLO | 2005年 / 42卷
关键词
Finite Element Method; Error Estimate; Variational Principle; Linear Elasticity; Mixed Finite Element;
D O I
暂无
中图分类号
学科分类号
摘要
We present nonconforming, rectangular mixed finite element methods based on the Hellinger-Reissner variational principle in both two and three dimensions and show stability and convergence. An optimal error estimate of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{O}(h^2)$\end{document} is obtained for the displacement, along with a suboptimal, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{O}(h)$\end{document}, error estimate for the stress, in both dimensions.
引用
收藏
页码:115 / 133
页数:18
相关论文
共 50 条