Filter pruning via expectation-maximization

被引:0
|
作者
Sheng Xu
Yanjing Li
Linlin Yang
Baochang Zhang
Dianmin Sun
Kexin Liu
机构
[1] Beihang University,School of Automatic Science and Electrical Engineering
[2] Beihang University,School of Electronics and Information Engineering
[3] University of Bonn,Institute of Computer Science II
[4] Nanchang Institute of Technology,Department of Thoracic Surgery, Shandong Cancer Hospital and Institute
[5] Shandong First Medical University and Shandong Academy of Medical Sciences,State Key Laboratory of Software Development Environment Beijing Advanced Innovation Center for Big Data and Brain Computing
[6] Beihang University,undefined
来源
关键词
Expectation maximization; CNN compression; CNN pruning;
D O I
暂无
中图分类号
学科分类号
摘要
The redundancy in convolutional neural networks (CNNs) causes a significant number of extra parameters resulting in increased computation and less diverse filters. In this paper, we introduce filter pruning via expectation-maximization (FPEM) to trim redundant structures and improve the diversity of remaining structures. Our method is designed based on the discovery that the filter diversity of pruned networks is positively correlated with its performance. The expectation step divides filters into groups by maximum likelihood layer-wisely, and averages the output feature maps for each cluster. The maximization step calculates the likelihood estimation of clusters and formulates a loss function to make the distributions in the same cluster consistent. After training, the intra-cluster redundant filters can be trimmed and only intra-cluster diverse filters are retained. Experiments conducted on CIFAR-10 have outperformed the corresponding full models. On ImageNet ILSVRC12, FPEM reduces 46.5%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$46.5\%$$\end{document} FLOPs on ResNet-50 with only 0.36%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.36\%$$\end{document} Top-1 accuracy decrease, which advances the state-of-arts. In particular, the FPEM offers strong generalization performance on the object detection task.
引用
收藏
页码:12807 / 12818
页数:11
相关论文
共 50 条
  • [1] Filter pruning via expectation-maximization
    Xu, Sheng
    Li, Yanjing
    Yang, Linlin
    Zhang, Baochang
    Sun, Dianmin
    Liu, Kexin
    [J]. NEURAL COMPUTING & APPLICATIONS, 2022, 34 (15): : 12807 - 12818
  • [2] Personalized Itinerary Recommendation via Expectation-Maximization
    Panagiotakis, Costas
    Daskalaki, Evangelia
    Papadakis, Harris
    Fragopoulou, Paraskevi
    [J]. 2022 IEEE 17TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCES AND INFORMATION TECHNOLOGIES (CSIT), 2022, : 210 - 213
  • [3] The expectation-maximization algorithm
    Moon, TK
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 1996, 13 (06) : 47 - 60
  • [4] Adaptive Cubature Kalman Filter Based on the Expectation-Maximization Algorithm
    Zhou, Weidong
    Liu, Lu
    [J]. IEEE ACCESS, 2019, 7 : 158198 - 158206
  • [5] Expectation-Maximization via Pretext-Invariant Representations
    Oinar, Chingis
    Le, Binh M.
    Woo, Simon S. S.
    [J]. IEEE ACCESS, 2023, 11 : 65266 - 65276
  • [6] Vehicle image classification via expectation-maximization algorithm
    Pumrin, S
    Dailey, DJ
    [J]. PROCEEDINGS OF THE 2003 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL II: COMMUNICATIONS-MULTIMEDIA SYSTEMS & APPLICATIONS, 2003, : 468 - 471
  • [7] Quantum expectation-maximization algorithm
    Miyahara, Hideyuki
    Aihara, Kazuyuki
    Lechner, Wolfgang
    [J]. PHYSICAL REVIEW A, 2020, 101 (01)
  • [8] THE NOISY EXPECTATION-MAXIMIZATION ALGORITHM
    Osoba, Osonde
    Mitaim, Sanya
    Kosko, Bart
    [J]. FLUCTUATION AND NOISE LETTERS, 2013, 12 (03):
  • [9] Autonomous Exploration with Expectation-Maximization
    Wang, Jinkun
    Englot, Brendan
    [J]. ROBOTICS RESEARCH, 2020, 10 : 759 - 774
  • [10] Estimating Quasiperiodic Disturbance With Unknown Frequency via Expectation-Maximization
    Li, Wenshuo
    Tian, Bo
    Qiao, Jianzhong
    Guo, Lei
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (07) : 6843 - 6856