Determining the order parameter for the morphological analysis of two-dimensional structures

被引:0
|
作者
E. M. Sal’nikova
L. M. Martyushev
机构
[1] Russian Academy of Sciences,Institute of Industrial Ecology, Ural Division
来源
Technical Physics Letters | 2001年 / 27卷
关键词
Entropy; Fourier; Comparative Analysis; Morphological Analysis; Information Entropy;
D O I
暂无
中图分类号
学科分类号
摘要
Problems encountered in determining the order parameter for two-dimensional structures are considered. The task is solved using two approaches, which are based on the spectral transformations (Fourier and Walsh) and the information entropy concept. The results of calculations for particular structures are used for a comparative analysis, showing both advantages and drawbacks of these methods.
引用
收藏
页码:301 / 304
页数:3
相关论文
共 50 条
  • [1] Determining the order parameter for the morphological analysis of two-dimensional structures
    Sal'nikova, EM
    Martyushev, LM
    TECHNICAL PHYSICS LETTERS, 2001, 27 (04) : 301 - 304
  • [2] Order parameter in two-dimensional glasses
    Kanazawa, I
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 1997, (126): : 393 - 397
  • [3] Order parameter for two-dimensional critical systems with boundaries
    Res, I
    Straley, JP
    PHYSICAL REVIEW B, 2000, 61 (21): : 14425 - 14433
  • [4] Two-dimensional image analysis by morphological processes
    Ballarin, V.
    Moler, E.
    Gonzalez, M.
    Torres, S.
    Informacion Tecnologica, 6 (05):
  • [5] Thermodynamics of two-dimensional quantum magnets with collinear order parameter
    Elstner, N
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1997, 11 (15): : 1753 - 1782
  • [6] Chirality measure and chiral order parameter for a two-dimensional system
    Osipov, MA
    Pickup, BT
    Fehervari, M
    Dunmur, DA
    MOLECULAR PHYSICS, 1998, 94 (02) : 283 - 287
  • [7] Order in two-dimensional projections of thin amorphous three-dimensional structures
    Mountjoy, G
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1999, 11 (11) : 2319 - 2336
  • [8] Order in two-dimensional projections of thin amorphous three-dimensional structures
    Mountjoy, G.
    Journal of Physics Condensed Matter, 11 (11): : 2319 - 2336
  • [9] Two-dimensional parameter estimation using two-dimensional cyclic statistics
    Wang, Fei
    Wang, Shu-Xun
    Dou, Hui-Jing
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2003, 31 (10): : 1522 - 1525
  • [10] Morphological stability of inclusions: two-dimensional analysis with a superelliptic approximation
    Kobayashi, N
    Onaka, S
    Fujii, T
    Kato, M
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2005, 392 (1-2): : 248 - 253