Numerical radius inequalities for tensor product of operators

被引:0
|
作者
Pintu Bhunia
Kallol Paul
Anirban Sen
机构
[1] Jadavpur University,Department of Mathematics
关键词
Numerical radius; operator norm; tensor product; Cartesian decomposition; bounded linear operator; Primary: 47A12; Secondary: 15A60; 47A30; 47A50;
D O I
暂无
中图分类号
学科分类号
摘要
The two well-known numerical radius inequalities for the tensor product A⊗B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A \otimes B$$\end{document} acting on H⊗K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}} \otimes {\mathbb {K}}$$\end{document}, where A and B are bounded linear operators defined on complex Hilbert spaces H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}} $$\end{document} and K,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathbb {K}},$$\end{document} respectively are 12‖A‖‖B‖≤w(A⊗B)≤‖A‖‖B‖\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{1}{2} \Vert A\Vert \Vert B\Vert \le w(A \otimes B) \le \Vert A\Vert \Vert B\Vert $$\end{document} and w(A)w(B)≤w(A⊗B)≤min{w(A)‖B‖,w(B)‖A‖}.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ w(A)w(B) \le w(A \otimes B) \le \min \{ w(A) \Vert B\Vert , w(B) \Vert A\Vert \}. $$\end{document} In this article, we develop new lower and upper bounds for the numerical radius w(A⊗B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w(A \otimes B)$$\end{document} of the tensor product A⊗B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A \otimes B $$\end{document} and study the equality conditions for those bounds.
引用
收藏
相关论文
共 50 条
  • [1] Numerical radius inequalities for tensor product of operators
    Bhunia, Pintu
    Paul, Kallol
    Sen, Anirban
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2023, 133 (01):
  • [2] Advancement of Numerical Radius Inequalities of Operators and Product of Operators
    Nayak, Raj Kumar
    [J]. IRANIAN JOURNAL OF SCIENCE, 2024, 48 (03) : 649 - 657
  • [3] Some numerical radius inequalities for tensor products of operators
    Aici, Soumia
    Frakis, Abdelkader
    Kittaneh, Fuad
    [J]. JOURNAL OF ANALYSIS, 2024,
  • [4] Numerical radius inequalities for indefinite inner product space operators
    Ren, Conghui
    Wu, Deyu
    [J]. ADVANCES IN OPERATOR THEORY, 2023, 8 (02)
  • [5] Numerical radius inequalities for indefinite inner product space operators
    Conghui Ren
    Deyu Wu
    [J]. Advances in Operator Theory, 2023, 8
  • [6] ON INEQUALITIES FOR A-NUMERICAL RADIUS OF OPERATORS
    Bhunia, Pintu
    Paul, Kallol
    Nayak, Raj Kumar
    [J]. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2020, 36
  • [7] NUMERICAL RADIUS INEQUALITIES FOR SEVERAL OPERATORS
    Hirzallah, Omar
    Kittaneh, Fuad
    [J]. MATHEMATICA SCANDINAVICA, 2014, 114 (01) : 110 - 119
  • [8] Spectral radius, numerical radius, and the product of operators
    Alizadeh, Rahim
    Asadi, Mohammad B.
    Cheng, Che-Man
    Hong, Wanli
    Li, Chi-Kwong
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 423 (01) : 639 - 645
  • [9] q-NUMERICAL RADIUS INEQUALITIES FOR PRODUCT OF COMPLEX LINEAR BOUNDED OPERATORS
    Kaadoud, Mohamed chraibi
    Moulaharabbi, Somayya
    [J]. OPERATORS AND MATRICES, 2024, 18 (02): : 375 - 388
  • [10] Numerical Radius Inequalities Involving Accretive Operators
    Nasrin Jowkar
    Assadollah Niknam
    [J]. Iranian Journal of Science and Technology, Transactions A: Science, 2020, 44 : 1653 - 1659