Moments of orthogonal polynomials and exponential generating functions

被引:0
|
作者
Ira M. Gessel
Jiang Zeng
机构
[1] Brandeis University,Department of Mathematics
[2] Université de Lyon,Institut Camille Jordan; UMR 5208 du CNRS
[3] Université Lyon 1,undefined
来源
The Ramanujan Journal | 2023年 / 61卷
关键词
Moments; Orthogonal polynomials; Wilson polynomials; Askey–Wilson polynomials; Genocchi numbers; Genocchi median numbers; Dumont–Foata polynomials; 33C45; 05A15; 05A19; 33D45;
D O I
暂无
中图分类号
学科分类号
摘要
Starting from the moment sequences of classical orthogonal polynomials we derive the orthogonality purely algebraically. We consider also the moments of (q=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q=1$$\end{document}) classical orthogonal polynomials, and study those cases in which the exponential generating function has a nice form. In the opposite direction, we show that the generalized Dumont–Foata polynomials with six parameters are the moments of rescaled continuous dual Hahn polynomials. Finally, we show that one of our methods can be applied to deal with the moments of Askey–Wilson polynomials.
引用
收藏
页码:675 / 700
页数:25
相关论文
共 50 条