Distinct r-tuples in integer partitions

被引:0
|
作者
Margaret Archibald
Aubrey Blecher
Arnold Knopfmacher
机构
[1] University of the Witwatersrand,The John Knopfmacher Centre for Applicable Analysis and Number Theory School of Mathematics
来源
The Ramanujan Journal | 2019年 / 50卷
关键词
Generating function; Integer partitions; -tuples; Primary: 05A16; 05A17; Secondary: 05A15;
D O I
暂无
中图分类号
学科分类号
摘要
We define Pr(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{r}(q)$$\end{document} to be the generating function which counts the total number of distinct (sequential) r-tuples in partitions of n and Qr(q,u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_r(q,u)$$\end{document} to be the corresponding bivariate generating function where u tracks the number of distinct r-tuples. These statistics generalise the number of distinct parts in a partition. In the early part of this paper we develop the tools by finding these generating functions for small cases r=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=2$$\end{document} and r=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=3$$\end{document}. Then we use these methods to obtain Pr(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{r}(q)$$\end{document} and Qr(q,u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_r(q,u)$$\end{document} in the case of general r-tuples. These formulae are used to find the average number of distinct r-tuples for fixed r, as n→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\rightarrow \infty $$\end{document}. Finally we show that as r→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\rightarrow \infty $$\end{document}, q-rPr(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q^{-r}P_{r}(q)$$\end{document} converges to an explicitly determined power series.
引用
收藏
页码:237 / 252
页数:15
相关论文
共 50 条
  • [32] Cubic partitions in terms of distinct partitions
    Merca, Mircea
    RAMANUJAN JOURNAL, 2025, 67 (02):
  • [33] Derivatives are essentially integer partitions
    Yang, Winston C.
    Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University, 1999, 17 (03): : 235 - 245
  • [34] A New Approach to Integer Partitions
    J. P. O. Santos
    M. L. Matte
    Bulletin of the Brazilian Mathematical Society, New Series, 2018, 49 : 811 - 847
  • [35] Derivatives are essentially integer partitions
    Yang, WC
    DISCRETE MATHEMATICS, 2000, 222 (1-3) : 235 - 245
  • [36] Integer partitions with fixed subsums
    Yakubovich, Y
    ELECTRONIC JOURNAL OF COMBINATORICS, 2005, 12 (01):
  • [37] Integer partitions into Diophantine pairs
    Bencherif, F.
    Benyahia-Tani, N.
    Bouroubi, S.
    Kihel, O.
    Yahi, Z.
    QUAESTIONES MATHEMATICAE, 2017, 40 (04) : 435 - 442
  • [38] Optimal transport and integer partitions
    Hohloch, Sonja
    DISCRETE APPLIED MATHEMATICS, 2015, 190 : 75 - 85
  • [39] An expansion for the number of partitions of an integer
    Brassesco, Stella
    Meyroneinc, Arnaud
    RAMANUJAN JOURNAL, 2020, 51 (03): : 563 - 592
  • [40] Integer partitions and the Sperner property
    Canfield, ER
    THEORETICAL COMPUTER SCIENCE, 2003, 307 (03) : 515 - 529