Distinct r-tuples in integer partitions

被引:0
|
作者
Margaret Archibald
Aubrey Blecher
Arnold Knopfmacher
机构
[1] University of the Witwatersrand,The John Knopfmacher Centre for Applicable Analysis and Number Theory School of Mathematics
来源
The Ramanujan Journal | 2019年 / 50卷
关键词
Generating function; Integer partitions; -tuples; Primary: 05A16; 05A17; Secondary: 05A15;
D O I
暂无
中图分类号
学科分类号
摘要
We define Pr(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{r}(q)$$\end{document} to be the generating function which counts the total number of distinct (sequential) r-tuples in partitions of n and Qr(q,u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_r(q,u)$$\end{document} to be the corresponding bivariate generating function where u tracks the number of distinct r-tuples. These statistics generalise the number of distinct parts in a partition. In the early part of this paper we develop the tools by finding these generating functions for small cases r=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=2$$\end{document} and r=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=3$$\end{document}. Then we use these methods to obtain Pr(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{r}(q)$$\end{document} and Qr(q,u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_r(q,u)$$\end{document} in the case of general r-tuples. These formulae are used to find the average number of distinct r-tuples for fixed r, as n→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\rightarrow \infty $$\end{document}. Finally we show that as r→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\rightarrow \infty $$\end{document}, q-rPr(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q^{-r}P_{r}(q)$$\end{document} converges to an explicitly determined power series.
引用
收藏
页码:237 / 252
页数:15
相关论文
共 50 条
  • [21] Optimal integer partitions
    Engel, Konrad
    Radzik, Tadeusz
    Schlage-Puchta, Jan-Christoph
    EUROPEAN JOURNAL OF COMBINATORICS, 2014, 36 : 425 - 436
  • [22] Notes on integer partitions
    Ganter, Bernhard
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2022, 142 : 31 - 40
  • [23] ON THE POSET OF PARTITIONS OF AN INTEGER
    ZIEGLER, GM
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1986, 42 (02) : 215 - 222
  • [24] Constrained integer partitions
    Borgs, C
    Chayes, JT
    Mertens, S
    Pittel, B
    LATIN 2004: THEORETICAL INFORMATICS, 2004, 2976 : 59 - 68
  • [25] Integer Partitions and Convexity
    Bouroubi, Sadek
    JOURNAL OF INTEGER SEQUENCES, 2007, 10 (06)
  • [26] BIASES IN INTEGER PARTITIONS
    Kim, Byungchan
    Kim, Eunmi
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2021, 104 (02) : 177 - 186
  • [27] Intersecting integer partitions
    Borg, Peter
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2016, 66 : 265 - 275
  • [28] Gaps in integer partitions
    Knopfmacher, Arnold
    Warlimont, Richard
    UTILITAS MATHEMATICA, 2006, 71 : 257 - 267
  • [29] Successions in integer partitions
    Arnold Knopfmacher
    Augustine O. Munagi
    The Ramanujan Journal, 2009, 18 : 239 - 255
  • [30] Successions in integer partitions
    Knopfmacher, Arnold
    Munagi, Augustine O.
    RAMANUJAN JOURNAL, 2009, 18 (03): : 239 - 255