Invariant Subspaces for Banach Space Operators with a Multiply Connected Spectrum

被引:0
|
作者
Onur Yavuz
机构
[1] Middle East Technical University,Department of Mathematics
来源
关键词
Primary 47A15; Secondary 47A60; Invariant subspaces; polynomially bounded operators; multiply connected regions; functional calculus;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a multiply connected domain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\Omega = {\mathbb{D}} \backslash \bigcup^{n}_{j=1} \overline{B}(\lambda_j, r_j)$$ \end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\mathbb{D}}$$ \end{document} denotes the unit disk and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\overline{B}(\lambda_j, r_j) \subset {\mathbb{D}}$$ \end{document} denotes the closed disk centered at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\lambda_j \in {\mathbb{D}}$$ \end{document} with radius rj for j = 1, . . . , n. We show that if T is a bounded linear operator on a Banach space X whose spectrum contains ∂Ω and does not contain the points λ1, λ2, . . . , λn, and the operators T and rj(T − λjI)−1 are polynomially bounded, then there exists a nontrivial common invariant subspace for T* and (T − λjI)*-1.
引用
收藏
页码:433 / 446
页数:13
相关论文
共 50 条