We consider a multiply connected domain \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\Omega = {\mathbb{D}} \backslash \bigcup^{n}_{j=1} \overline{B}(\lambda_j, r_j)$$
\end{document} where \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$${\mathbb{D}}$$
\end{document} denotes the unit disk and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\overline{B}(\lambda_j, r_j) \subset {\mathbb{D}}$$
\end{document} denotes the closed disk centered at \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\lambda_j \in {\mathbb{D}}$$
\end{document} with radius rj for j = 1, . . . , n. We show that if T is a bounded linear operator on a Banach space X whose spectrum contains ∂Ω and does not contain the points λ1, λ2, . . . , λn, and the operators T and rj(T − λjI)−1 are polynomially bounded, then there exists a nontrivial common invariant subspace for T* and (T − λjI)*-1.