Local Hardy spaces of Musielak-Orlicz type and their applications

被引:0
|
作者
DaChun Yang
SiBei Yang
机构
[1] Beijing Normal University,School of Mathematical Sciences
[2] Laboratory of Mathematics and Complex Systems,undefined
[3] Ministry of Education,undefined
来源
Science China Mathematics | 2012年 / 55卷
关键词
local weight; Musielak-Orlicz function; local Hardy space; atom; local maximal function; local BMO space; dual space; pointwise multiplier; local Riesz transform; pseudo-differential operator; 42B35; 46E30; 42B30; 42B25; 42B20; 35S05; 47G30; 47B06;
D O I
暂无
中图分类号
学科分类号
摘要
Let φ: ℝn × [0,∞) → [0,∞) be a function such that φ(x, ·) is an Orlicz function and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi ( \cdot ,t) \in \mathbb{A}_\infty ^{loc} \left( {\mathbb{R}^n } \right)$$\end{document} (the class of local weights introduced by Rychkov). In this paper, the authors introduce a local Musielak-Orlicz Hardy space hφ(ℝn) by the local grand maximal function, and a local BMO-type space bmoφ(ℝn) which is further proved to be the dual space of hφ(ℝn). As an application, the authors prove that the class of pointwise multipliers for the local BMO-type space bmoφ(ℝn), characterized by Nakai and Yabuta, is just the dual of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1 \left( {\mathbb{R}^n } \right) + h_{\Phi _0 } \left( {\mathbb{R}^n } \right)$$\end{document}, where ϕ is an increasing function on (0,∞) satisfying some additional growth conditions and Φ0 a Musielak-Orlicz function induced by ϕ. Characterizations of hφ(ℝn), including the atoms, the local vertical and the local nontangential maximal functions, are presented. Using the atomic characterization, the authors prove the existence of finite atomic decompositions achieving the norm in some dense subspaces of hφ(ℝn), from which, the authors further deduce some criterions for the boundedness on hφ(ℝn) of some sublinear operators. Finally, the authors show that the local Riesz transforms and some pseudo-differential operators are bounded on hφ(ℝn).
引用
收藏
页码:1677 / 1720
页数:43
相关论文
共 50 条
  • [1] Local Hardy spaces of Musielak-Orlicz type and their applications
    Yang DaChun
    Yang SiBei
    [J]. SCIENCE CHINA-MATHEMATICS, 2012, 55 (08) : 1677 - 1720
  • [2] Local Hardy spaces of Musielak-Orlicz type and their applications
    YANG DaChun & YANG SiBei School of Mathematical Sciences
    [J]. Science China Mathematics, 2012, 55 (08) : 1676 - 1719
  • [3] Local Musielak-Orlicz Hardy Spaces
    Yang, Dachun
    Liang, Yiyu
    Luong Dang Ky
    [J]. REAL-VARIABLE THEORY OF MUSIELAK-ORLICZ HARDY SPACES, 2017, 2182 : 255 - 327
  • [4] Weak Musielak-Orlicz Hardy spaces and applications
    Liang, Yiyu
    Yang, Dachun
    Jiang, Renjin
    [J]. MATHEMATISCHE NACHRICHTEN, 2016, 289 (5-6) : 634 - 677
  • [5] Anisotropic weak Hardy spaces of Musielak-Orlicz type and their applications
    Zhang, Hui
    Qi, Chunyan
    Li, Baode
    [J]. FRONTIERS OF MATHEMATICS IN CHINA, 2017, 12 (04) : 993 - 1022
  • [6] Musielak-Orlicz Hardy Spaces
    Yang, Dachun
    Liang, Yiyu
    Luong Dang Ky
    [J]. REAL-VARIABLE THEORY OF MUSIELAK-ORLICZ HARDY SPACES, 2017, 2182 : 1 - 57
  • [7] Anisotropic weak Hardy spaces of Musielak-Orlicz type and their applications
    Hui Zhang
    Chunyan Qi
    Baode Li
    [J]. Frontiers of Mathematics in China, 2017, 12 : 993 - 1022
  • [8] Hardy operators on Musielak-Orlicz spaces
    Karaman, Turhan
    [J]. FORUM MATHEMATICUM, 2018, 30 (05) : 1245 - 1254
  • [9] SUMMABILITY IN MUSIELAK-ORLICZ HARDY SPACES
    Liu, Jun
    Xia, Haonan
    [J]. JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 60 (05) : 1057 - 1072
  • [10] Martingale Musielak-Orlicz Hardy spaces
    Guangheng Xie
    Yong Jiao
    Dachun Yang
    [J]. Science China Mathematics, 2019, 62 : 1567 - 1584