An integrated modeling approach for estimating monthly global rainfall erosivity

被引:3
|
作者
Fenta, Ayele A. [1 ]
Tsunekawa, Atsushi [2 ]
Haregeweyn, Nigussie [1 ]
Yasuda, Hiroshi [3 ]
Tsubo, Mitsuru [2 ]
Borrelli, Pasquale [4 ,5 ]
Kawai, Takayuki [6 ]
Belay, Ashebir S. [7 ]
Ebabu, Kindiye [2 ,8 ]
Berihun, Mulatu L. [9 ,10 ]
Sultan, Dagnenet [9 ]
Setargie, Tadesual A. [2 ,9 ]
Elnashar, Abdelrazek [11 ]
Arshad, Arfan [12 ]
Panagos, Panos [13 ]
机构
[1] Tottori Univ, Int Platform Dryland Res & Educ, Tottori 6800001, Japan
[2] Tottori Univ, Arid Land Res Ctr, 1390 Hamasaka, Tottori 6800001, Japan
[3] Tottori Univ, Org Educ Support & Int Affairs, Koyama Minami 4-101, Tottori 6808550, Japan
[4] Univ Basel, Dept Environm Sci, CH-4056 Basel, Switzerland
[5] Roma Tre Univ, Dept Sci, Rome, Italy
[6] Akita Univ, Grad Sch Int Resource Sci, 1-1 Tegatagakuen Machi, Akita 0108502, Japan
[7] Bahir Dar Univ, Dept Earth Sci, POB 79, Bahir Dar, Ethiopia
[8] Bahir Dar Univ, Coll Agr & Environm Sci, POB 1289, Bahir Dar, Ethiopia
[9] Bahir Dar Univ, Bahir Dar Inst Technol, Fac Civil & Water Resource Engn, POB 26, Bahir Dar, Ethiopia
[10] Univ Florida, Trop Res & Educ Ctr, Gainesville, FL 33031 USA
[11] Cairo Univ, Fac African Postgrad Studies, Dept Nat Resources, Giza 12613, Egypt
[12] Oklahoma State Univ, Dept Biosyst & Agr Engn, Stillwater, OK 74075 USA
[13] Joint Res Ctr JRC, European Commiss, I-21027 Ispra, VA, Italy
基金
日本学术振兴会; 日本科学技术振兴机构;
关键词
GEOGRAPHICALLY WEIGHTED REGRESSION; SOIL-EROSION; LAND PRECIPITATION; MANAGEMENT-PRACTICES; SATELLITE; BASIN; RUNOFF; REGION;
D O I
10.1038/s41598-024-59019-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Modeling monthly rainfall erosivity is vital to the optimization of measures to control soil erosion. Rain gauge data combined with satellite observations can aid in enhancing rainfall erosivity estimations. Here, we presented a framework which utilized Geographically Weighted Regression approach to model global monthly rainfall erosivity. The framework integrates long-term (2001-2020) mean annual rainfall erosivity estimates from IMERG (Global Precipitation Measurement (GPM) mission's Integrated Multi-satellitE Retrievals for GPM) with station data from GloREDa (Global Rainfall Erosivity Database, n = 3,286 stations). The merged mean annual rainfall erosivity was disaggregated into mean monthly values based on monthly rainfall erosivity fractions derived from the original IMERG data. Global mean monthly rainfall erosivity was distinctly seasonal; erosivity peaked at similar to 200 MJ mm ha(-1) h(-1) month(-1) in June-August over the Northern Hemisphere and similar to 700 MJ mm ha(-1) h(-1) month(-1) in December-February over the Southern Hemisphere, contributing to over 60% of the annual rainfall erosivity over large areas in each hemisphere. Rainfall erosivity was similar to 4 times higher during the most erosive months than the least erosive months (December-February and June-August in the Northern and Southern Hemisphere, respectively). The latitudinal distributions of monthly and seasonal rainfall erosivity were highly heterogeneous, with the tropics showing the greatest erosivity. The intra-annual variability of monthly rainfall erosivity was particularly high within 10-30 degrees latitude in both hemispheres. The monthly rainfall erosivity maps can be used for improving spatiotemporal modeling of soil erosion and planning of soil conservation measures.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Mapping monthly rainfall erosivity in Europe
    Ballabio, Cristiano
    Borrelli, Pasquale
    Spinoni, Jonathan
    Meusburger, Katrin
    Michaelides, Silas
    Begueria, Santiago
    Klik, Andreas
    Petan, Saso
    Janecek, Miloslav
    Olsen, Preben
    Aalto, Juha
    Lakatos, Monika
    Rymszewicz, Anna
    Dumitrescu, Alexandru
    Tadic, Melita Percec
    Diodato, Nazzareno
    Kostalova, Julia
    Rousseva, Svetla
    Banasik, Kazimierz
    Alewell, Christine
    Panagos, Panos
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2017, 579 : 1298 - 1315
  • [2] Estimating the rainfall erosivity factor from monthly precipitation data in the Madrid Region (Spain)
    Hernando, David
    Romana, Manuel G.
    [J]. JOURNAL OF HYDROLOGY AND HYDROMECHANICS, 2015, 63 (01) : 55 - 62
  • [3] Regionalization of monthly rainfall erosivity patterns in Switzerland
    Schmidt, Simon
    Alewell, Christine
    Panagos, Panos
    Meusburger, Katrin
    [J]. HYDROLOGY AND EARTH SYSTEM SCIENCES, 2016, 20 (10) : 4359 - 4373
  • [4] Monthly and annual rainfall erosivity for Minas Gerais State
    de Mello, Carlos Rogerio
    Carolino de Sa, Marcos Aurelio
    Curi, Nilton
    de Mello, Jose Marcio
    Viola, Marcelo Ribeiro
    da Silva, Antonio Marciano
    [J]. PESQUISA AGROPECUARIA BRASILEIRA, 2007, 42 (04) : 537 - 545
  • [5] Mapping Monthly Rainfall Erosivity for the Lazio Region (Italy)
    Mineo, C.
    Ridolfi, E.
    Moccia, B.
    Napolitano, F.
    [J]. INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019, 2020, 2293
  • [6] SPATIAL DISTRIBUTION OF MONTHLY AND ANNUAL RAINFALL AND RAINFALL EROSIVITY IN ESPIRITO SANTO, BRAZIL
    de Mello, Carlos Rogerio
    Viola, Marcelo Ribeiro
    Curi, Nilton
    da Silva, Antonio Marciano
    [J]. REVISTA BRASILEIRA DE CIENCIA DO SOLO, 2012, 36 (06): : 1878 - 1891
  • [7] Models for estimating daily rainfall erosivity in China
    Xie, Yun
    Yin, Shui-qing
    Liu, Bao-yuan
    Nearing, Mark A.
    Zhao, Ying
    [J]. JOURNAL OF HYDROLOGY, 2016, 535 : 547 - 558
  • [8] Global rainfall erosivity projections for 2050 and 2070
    Panagos, Panos
    Borrelli, Pasquale
    Matthews, Francis
    Liakos, Leonidas
    Bezak, Nejc
    Diodato, Nazzareno
    Ballabio, Cristiano
    [J]. JOURNAL OF HYDROLOGY, 2022, 610
  • [9] Estimating rainfall erosivity by aggregated drop size distributions
    Carollo, Francesco Giuseppe
    Ferro, Vito
    Serio, Maria Angela
    [J]. HYDROLOGICAL PROCESSES, 2016, 30 (13) : 2119 - 2128
  • [10] Geostatistically derived Great Lakes USLE monthly rainfall erosivity factors
    Wilkes, G
    Sawada, M
    [J]. JOURNAL OF GREAT LAKES RESEARCH, 2005, 31 (02) : 155 - 165