A realistic Greenland ice sheet and surrounding glaciers and ice caps melting in a coupled climate model

被引:1
|
作者
Marion Devilliers
Didier Swingedouw
Juliette Mignot
Julie Deshayes
Gilles Garric
Mohamed Ayache
机构
[1] EPOC UMR 5805 CNRS,
[2] OASU,undefined
[3] Université de Bordeaux Allée Geoffroy Saint-Hilaire,undefined
[4] CS 50023,undefined
[5] LOCEAN UMR 7159 CNRS IRD,undefined
[6] Université Pierre et Marie Curie/MNHN,undefined
[7] Institut Pierre Simon Laplace,undefined
[8] Mercator Océan,undefined
来源
Climate Dynamics | 2021年 / 57卷
关键词
Greenland melting; AMOC; Subpolar gyre;
D O I
暂无
中图分类号
学科分类号
摘要
Greenland ice sheet experienced an intensive melting in the last century, especially in the 1920s and over the last decades. The supplementary input into the ocean could disrupt the freshwater budget of the North Atlantic. Simultaneously, some signs of a recent weakening of the Atlantic Meridional Overturning Circulation (AMOC) have been reported. In order to better understand the possible impact of the increasing melting on the North Atlantic circulation, salinity and temperature trends, we construct an observation-based estimate of the freshwater fluxes spanning from 1840 to 2014. The estimate is based on runoff fluxes coming from Greenland ice sheet and surrounding glaciers and ice caps. Input from iceberg melting is also included and spatially distributed over the North Atlantic following an observed climatology. We force a set of historical simulations of the IPSL-CM6A-LR coupled climate model with this reconstruction from 1920 to 2014. The ten-member ensemble mean displays freshened and cooled waters around Greenland, which spread in the subpolar gyre, and then towards the subtropical gyre and the Nordic Seas. Over the whole period, the convection is reduced in the Labrador and Nordic Seas, while it is slightly enhanced in the Irminger Sea, and the AMOC is weakened by 0.32±0.35\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.32 \pm 0.35$$\end{document} Sv at 26∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$26 ^\circ $$\end{document} N. The multi-decadal trend of the North Atlantic surface temperature obtained with the additional freshwater forcing is slightly closer to observations than in standard historical simulations, although the two trends are only different at the 90% confidence level. Slight improvement of the Root Mean Square Error with respect to observations in the subpolar gyre region suggests that part of the surface temperature variability over the recent decades may have been forced by the release of freshwater from Greenland and surrounding regions since the 1920s. Finally, we highlight that the AMOC decrease due to Greenland melting remains modest in these simulations and can only explain a very small amount of the 3±1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\pm 1$$\end{document} Sv weakening suggested in a recent study.
引用
收藏
页码:2467 / 2489
页数:22
相关论文
共 50 条
  • [1] A realistic Greenland ice sheet and surrounding glaciers and ice caps melting in a coupled climate model
    Devilliers, Marion
    Swingedouw, Didier
    Mignot, Juliette
    Deshayes, Julie
    Garric, Gilles
    Ayache, Mohamed
    [J]. CLIMATE DYNAMICS, 2021, 57 (9-10) : 2467 - 2489
  • [2] Melting glaciers and ice caps
    Frank Paul
    [J]. Nature Geoscience, 2011, 4 : 71 - 72
  • [3] The role of an interactive Greenland ice sheet in the coupled climate-ice sheet model EC-Earth-PISM
    Madsen, M. S.
    Yang, S.
    Aoalgeirsdottir, G.
    Svendsen, S. H.
    Rodehacke, C. B.
    Ringgaard, I. M.
    [J]. CLIMATE DYNAMICS, 2022, 59 (3-4) : 1189 - 1211
  • [4] The role of an interactive Greenland ice sheet in the coupled climate-ice sheet model EC-Earth-PISM
    M. S. Madsen
    S. Yang
    G. Aðalgeirsdóttir
    S. H. Svendsen
    C. B. Rodehacke
    I. M. Ringgaard
    [J]. Climate Dynamics, 2022, 59 : 1189 - 1211
  • [5] The first complete inventory of the local glaciers and ice caps on Greenland
    Rastner, P.
    Bolch, T.
    Moelg, N.
    Machguth, H.
    Le Bris, R.
    Paul, F.
    [J]. CRYOSPHERE, 2012, 6 (06): : 1483 - 1495
  • [6] Projected changes of Greenland's periphery glaciers and ice caps
    Kang, Limin
    Ding, Minghu
    Wang, Yuzhe
    Sun, Weijun
    Wang, Lei
    An, Hongmin
    Zhang, Qinglin
    Che, Jiahang
    Huai, Baojuan
    [J]. Environmental Research Letters, 2024, 19 (12)
  • [7] Mass Loss of Glaciers and Ice Caps Across Greenland Since the Little Ice Age
    Carrivick, Jonathan L.
    Boston, Clare M.
    Sutherland, Jenna L.
    Pearce, Danni
    Armstrong, Hugo
    Bjork, Anders
    Kjeldsen, Kristian K.
    Abermann, Jakob
    Oien, Rachel P.
    Grimes, Michael
    James, William H. M.
    Smith, Mark W.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2023, 50 (10)
  • [8] Greenland ice sheet motion coupled with daily melting in late summer
    Shepherd, Andrew
    Hubbard, Alun
    Nienow, Peter
    King, Matt
    McMillan, Malcolm
    Joughin, Ian
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2009, 36
  • [9] Complex motion of Greenland Ice Sheet outlet glaciers with basal temperate ice
    Law, Robert
    Christoffersen, Poul
    MacKie, Emma
    Cook, Samuel
    Haseloff, Marianne
    Gagliardini, Olivier
    [J]. SCIENCE ADVANCES, 2023, 9 (06)
  • [10] An ice sheet model validation framework for the Greenland ice sheet
    Price, Stephen F.
    Hoffman, Matthew J.
    Bonin, Jennifer A.
    Howat, Ian M.
    Neumann, Thomas
    Saba, Jack
    Tezaur, Irina
    Guerber, Jeffrey
    Chambers, Don P.
    Evans, Katherine J.
    Kennedy, Joseph H.
    Lenaerts, Jan
    Lipscomb, William H.
    Perego, Mauro
    Salinger, Andrew G.
    Tuminaro, Raymond S.
    van den Broeke, Michiel R.
    Nowicki, Sophie M. J.
    [J]. GEOSCIENTIFIC MODEL DEVELOPMENT, 2017, 10 (01) : 255 - 270