Robust Exponential Synchronization for Stochastic Delayed Neural Networks with Reaction–Diffusion Terms and Markovian Jumping Parameters

被引:1
|
作者
Tengda Wei
Yangfan Wang
Linshan Wang
机构
[1] Ocean University of China,College of Oceanic and Atmospheric Sciences
[2] University of Dundee,Department of Mathematics
[3] Ocean University of China,College of Marine Life Science
[4] Ocean University of China,School of Mathematical Sciences
来源
Neural Processing Letters | 2018年 / 48卷
关键词
Synchronization; Stochastic delayed neural network; Reaction–diffusion; Markovian jumping parameter; Wiener process; 34D06; 90B15; 60J10; 34K50;
D O I
暂无
中图分类号
学科分类号
摘要
This paper investigates robust exponential synchronization for stochastic delayed neural networks with reaction–diffusion terms and Markovian jumping parameters driven by infinite dimensional Wiener processes. The novelty of this paper lives in the use of a new Lyapunov–Krasovskii functional and Poincaré inequality to present some criteria for robust exponential synchronization in terms of linear matrix inequalities (LMIs) and matrix measure under Robin boundary conditions. Finally, two numerical examples are provided to illustrate the effectiveness of the easily verifiable synchronization LMIs in MATLAB toolbox.
引用
收藏
页码:979 / 994
页数:15
相关论文
共 50 条
  • [1] Robust Exponential Synchronization for Stochastic Delayed Neural Networks with Reaction-Diffusion Terms and Markovian Jumping Parameters
    Wei, Tengda
    Wang, Yangfan
    Wang, Linshan
    [J]. NEURAL PROCESSING LETTERS, 2018, 48 (02) : 979 - 994
  • [2] Stochastic exponential stability of the delayed reaction-diffusion recurrent neural networks with Markovian jumping parameters
    Wang, Linshan
    Zhang, Zhe
    Wang, Yangfan
    [J]. PHYSICS LETTERS A, 2008, 372 (18) : 3201 - 3209
  • [3] Robust exponential stability for delayed uncertain Hopfield neural networks with Markovian jumping parameters
    Li, Hongyi
    Chen, Bing
    Zhou, Qi
    Lin, Chong
    [J]. PHYSICS LETTERS A, 2008, 372 (30) : 4996 - 5003
  • [4] Synchronization of stochastic Markovian jump neural networks with reaction-diffusion terms
    Shi, Guodong
    Ma, Qian
    [J]. NEUROCOMPUTING, 2012, 77 (01) : 275 - 280
  • [5] Exponential Stability of Delayed Reaction-Diffusion Neural Networks with Markovian Jumping Parameters Based on State Estimation
    Liu Yan
    Sun Duoqing
    Ma Huiquan
    [J]. PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 3267 - 3272
  • [6] ROBUST EXPONENTIAL STABILITY OF STOCHASTIC REACTION-DIFFUSION RECURRENT NEURAL NETWORKS WITH MARKOVIAN JUMPING PARAMETERS AND MODE-DEPENDENT DELAYS
    Kao, Y.
    Zhang, P.
    Shi, L.
    Sun, X.
    [J]. DYNAMIC SYSTEMS AND APPLICATIONS, 2014, 23 (2-3): : 391 - 414
  • [7] Adaptive exponential synchronization of delayed neural networks with reaction-diffusion terms
    Sheng, Li
    Yang, Huizhong
    Lou, Xuyang
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 40 (02) : 930 - 939
  • [8] Exponential stability of delayed recurrent neural networks with Markovian jumping parameters
    Wang, Zidong
    Liu, Yurong
    Yu, Li
    Liu, Xiaohui
    [J]. PHYSICS LETTERS A, 2006, 356 (4-5) : 346 - 352
  • [9] Distributed adaptive synchronization for delayed neural networks with Markovian jumping parameters
    Dai, Anding
    Xiao, Cuie
    [J]. PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 3636 - 3641
  • [10] Exponential stability of stochastic reaction-diffusion uncertain fuzzy neural networks with mixed delays and Markovian jumping parameters
    Balasubramaniam, P.
    Vidhya, C.
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (03) : 3109 - 3115