Kinetics of nitrous oxide (N2O) formation and reduction by Paracoccus pantotrophus

被引:0
|
作者
B. L. Read-Daily
F. Sabba
J. P. Pavissich
R. Nerenberg
机构
[1] Elizabethtown College,Department of Engineering and Physics
[2] University of Notre Dame,Department of Civil Engineering and Environmental Engineering and Earth Sciences
[3] Universidad Adolfo Ibáñez,Facultad de Ingeniería y Ciencias
来源
AMB Express | / 6卷
关键词
Nitrous oxide; Denitrification; Maximum specific reduction rates; Kinetics;
D O I
暂无
中图分类号
学科分类号
摘要
Nitrous oxide (N2O) is a powerful greenhouse gas emitted from wastewater treatment, as well as natural systems, as a result of biological nitrification and denitrification. While denitrifying bacteria can be a significant source of N2O, they can also reduce N2O to N2. More information on the kinetics of N2O formation and reduction by denitrifying bacteria is needed to predict and quantify their impact on N2O emissions. In this study, kinetic parameters were determined for Paracoccus pantotrophus, a common denitrifying bacterium. Parameters included the maximum specific reduction rates, q^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{q}$$\end{document}, growth rates, μ^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{\upmu }}$$\end{document}, and yields, Y, for reduction of NO3− (nitrate) to nitrite (NO2−), NO2− to N2O, and N2O to N2, with acetate as the electron donor. The q^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{q}$$\end{document} values were 2.9 gN gCOD−1 d−1 for NO3− to NO2−, 1.4 gN gCOD−1 d−1 for NO2− to N2O, and 5.3 gN gCOD−1 d−1 for N2O to N2. The μ^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{\upmu }}$$\end{document} values were 2.7, 0.93, and 1.5 d−1, respectively. When N2O and NO3− were added concurrently, the apparent (extant) kinetics, q^app\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{q}_{\text{app}}$$\end{document}, assuming reduction to N2, were 6.3 gCOD gCOD−1 d−1, compared to 5.4 gCOD gCOD−1 d−1 for NO3− as the sole added acceptor. The μ^app\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{\upmu }}_{\text{app}}$$\end{document} was 1.6 d−1, compared to 2.5 d−1 for NO3− alone. These results suggest that NO3− and N2O were reduced concurrently. Based on this research, denitrifying bacteria like P. pantotrophus may serve as a significant sink for N2O. With careful design and operation, treatment plants can use denitrifying bacteria to minimize N2O emissions.
引用
收藏
相关论文
共 50 条
  • [1] Kinetics of nitrous oxide (N2O) formation and reduction by Paracoccus pantotrophus
    Read-Daily, B. L.
    Sabba, F.
    Pavissich, J. P.
    Nerenberg, R.
    AMB EXPRESS, 2016, 6
  • [2] Formation of a cytochrome c-nitrous oxide reductase complex is obligatory for N2O reduction by Paracoccus pantotrophus
    Rasmussen, T
    Brittain, T
    Berks, BC
    Watmough, NJ
    Thomson, AJ
    DALTON TRANSACTIONS, 2005, (21) : 3501 - 3506
  • [3] Mechanisms of nitrous oxide (N2O) formation and reduction in denitrifying biofilms
    Sabba, Fabrizio
    Picioreanu, Cristian
    Nerenberg, Robert
    BIOTECHNOLOGY AND BIOENGINEERING, 2017, 114 (12) : 2753 - 2761
  • [4] Effect of electrolytes and soil minerals on nitrous oxide (N2O) hydrate formation kinetics
    Kyung, Daeseung
    Park, Taehyung
    Lim, Hyung-Kyu
    Kim, Hyungjun
    Lee, Woojin
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2016, 45 : 34 - 42
  • [5] nosX is essential for whole-cell N2O reduction in Paracoccus denitrificans but not for assembly of copper centres of nitrous oxide reductase
    Bennett, Sophie P.
    Torres, Maria J.
    Soriano-Laguna, Manuel J.
    Richardson, David J.
    Gates, Andrew J.
    Le Brun, Nick E.
    MICROBIOLOGY-SGM, 2020, 166 (10): : 909 - 917
  • [6] Effects of copper on nitrous oxide (N2O) reduction in denitrifiers and N2O emissions from agricultural soils
    Weishou Shen
    Huaiwen Xue
    Nan Gao
    Yutaka Shiratori
    Takehiro Kamiya
    Toru Fujiwara
    Kazuo Isobe
    Keishi Senoo
    Biology and Fertility of Soils, 2020, 56 : 39 - 51
  • [7] Effects of copper on nitrous oxide (N2O) reduction in denitrifiers and N2O emissions from agricultural soils
    Shen, Weishou
    Xue, Huaiwen
    Gao, Nan
    Shiratori, Yutaka
    Kamiya, Takehiro
    Fujiwara, Toru
    Isobe, Kazuo
    Senoo, Keishi
    BIOLOGY AND FERTILITY OF SOILS, 2020, 56 (01) : 39 - 51
  • [8] Nitrous oxide (N2O) angel or devil?
    Annequin, Daniel
    PEDIATRIC ANESTHESIA, 2020, 30 (04) : 388 - 389
  • [9] Biochar as electron donor for reduction of N2O by Paracoccus denitrificans
    Blanca Pascual, M.
    Angel Sanchez-Monedero, Miguel
    Cayuela, Maria L.
    Li, Shun
    Haderlein, Stefan B.
    Ruser, Reiner
    Kappler, Andreas
    FEMS MICROBIOLOGY ECOLOGY, 2020, 96 (08)
  • [10] Formation of nitrous oxide (N2O) hydrate in soil mineral suspensions with electrolytes
    Kyung, Daeseung
    Ehkh-Amgalan, Tamir
    Lee, Woojin
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 246