Equivariant Burnside groups and toric varieties

被引:0
|
作者
Andrew Kresch
Yuri Tschinkel
机构
[1] Universität Zürich,Institut für Mathematik
[2] Courant Institute,undefined
[3] Simons Foundation,undefined
关键词
Equivariant birational geometry; Toric varieties; De Concini-Procesi models;
D O I
暂无
中图分类号
学科分类号
摘要
We study G-equivariant birational geometry of toric varieties, where G is a finite group.
引用
收藏
页码:3013 / 3039
页数:26
相关论文
共 50 条
  • [1] Equivariant Burnside groups and toric varieties
    Kresch, Andrew
    Tschinkel, Yuri
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (05) : 3013 - 3039
  • [2] EQUIVARIANT SHEAVES ON TORIC VARIETIES
    LUNTS, V
    COMPOSITIO MATHEMATICA, 1995, 96 (01) : 63 - 83
  • [3] Equivariant Burnside Groups: Structure and Operations
    Kresch, Andrew
    Tschinkel, Yuri
    TAIWANESE JOURNAL OF MATHEMATICS, 2025,
  • [4] Equivariant Burnside groups and representation theory
    Andrew Kresch
    Yuri Tschinkel
    Selecta Mathematica, 2022, 28
  • [5] Equivariant Burnside groups and representation theory
    Kresch, Andrew
    Tschinkel, Yuri
    SELECTA MATHEMATICA-NEW SERIES, 2022, 28 (04):
  • [6] DESCRIBING TORIC VARIETIES AND THEIR EQUIVARIANT COHOMOLOGY
    Franz, Matthias
    COLLOQUIUM MATHEMATICUM, 2010, 121 (01) : 1 - 16
  • [7] Equivariant Chow cohomology of toric varieties
    Payne, S
    MATHEMATICAL RESEARCH LETTERS, 2006, 13 (01) : 29 - 41
  • [8] Equivariant embeddings into smooth toric varieties
    Hausen, J
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2002, 54 (03): : 554 - 570
  • [9] Graded rings and equivariant sheaves on toric varieties
    Perling, M
    MATHEMATISCHE NACHRICHTEN, 2004, 263 : 181 - 197
  • [10] The equivariant K-theory of toric varieties
    Au, Suanne
    Huang, Mu-Wan
    Walker, Mark E.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2009, 213 (05) : 840 - 845