In the present paper, we consider the fourth-order differential equation u(4)(x)+ωu′′(x)+a(x)u(x)=f(x,u(x)),∀x∈R(1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{aligned} u^{(4)}(x)+\omega u''(x)+a(x)u(x)=f(x,u(x)),\ \forall x\in {\mathbb {R}}\quad \quad \quad \quad (1) \end{aligned}$$\end{document}in which ω\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\omega $$\end{document} represents a constant, a∈C(R,R)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$a\in C({\mathbb {R}},{\mathbb {R}})$$\end{document} and f∈C(R2,R)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f\in C({\mathbb {R}}^{2},{\mathbb {R}})$$\end{document}. We are concerned with the existence of ground state homoclinic solution for (1) when a is unnecessary positive and F(x,u)=∫0uf(x,t)dt\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$F(x,u)=\int ^{u}_{0}f(x,t)dt$$\end{document} satisfies a kind of superquadratic conditions due to Ding and Luan. For the proof, we apply a variant generalized weak linking theorem developed by Schechter and Zou. Some results in the literature are generalized and improved.