Spin Matrix theory: a quantum mechanical model of the AdS/CFT correspondence

被引:0
|
作者
Troels Harmark
Marta Orselli
机构
[1] Copenhagen University,The Niels Bohr Institute
[2] Dipartimento di Fisica,undefined
[3] Università di Perugia,undefined
[4] I.N.F.N. Sezione di Perugia,undefined
关键词
Supersymmetric gauge theory; AdS-CFT Correspondence; Strong Coupling Expansion;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a new quantum mechanical theory called Spin Matrix theory (SMT). The theory is interacting with a single coupling constant g and is based on a Hilbert space of harmonic oscillators with a spin index taking values in a Lie (super)algebra representation as well as matrix indices for the adjoint representation of U(N). We show that SMT describes N=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=4 $$\end{document} super-Yang-Mills theory (SYM) near zero-temperature critical points in the grand canonical phase diagram. Equivalently, SMT arises from non-relativistic limits of N=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=4 $$\end{document} SYM. Even though SMT is a non-relativistic quantum mechanical theory it contains a variety of phases mimicking the AdS/CFT correspondence. Moreover, the g → ∞ limit of SMT can be mapped to the supersymmetric sector of string theory on AdS5× S5. We study SU(2) SMT in detail. At large N and low temperatures it is a theory of spin chains that for small g resembles planar gauge theory and for large g a non-relativistic string theory. When raising the temperature a partial deconfinement transition occurs due to finite-N effects. For sufficiently high temperatures the partially deconfined phase has a classical regime. We find a matrix model description of this regime at any coupling g. Setting g = 0 it is a theory of N2 + 1 harmonic oscillators while for large g it becomes 2N harmonic oscillators.
引用
收藏
相关论文
共 50 条
  • [1] Spin Matrix theory: a quantum mechanical model of the AdS/CFT correspondence
    Harmark, Troels
    Orselli, Marta
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2014, (11):
  • [2] Higher Spin AdS/CFT Correspondence and Quantum Gravity Aspects of AdS/CFT
    Ammon, Martin
    [J]. 1ST KARL SCHWARZSCHILD MEETING ON GRAVITATIONAL PHYSICS, 2016, 170 : 135 - 143
  • [3] Matrix model maps in AdS/CFT correspondence
    Donos, A
    Jevicki, A
    Rodrigues, JP
    [J]. PHYSICAL REVIEW D, 2005, 72 (12)
  • [4] Matrix Theory, AdS/CFT, and Gauge/Gravity Correspondence
    Hu, Shan
    Nanopoulos, Dimitri
    [J]. ADVANCES IN HIGH ENERGY PHYSICS, 2013, 2013
  • [5] Supercurrents in Matrix theory and the generalized AdS/CFT correspondence
    Sekino, Y
    [J]. NUCLEAR PHYSICS B, 2001, 602 (1-2) : 147 - 171
  • [6] Lovelock theory and the AdS/CFT correspondence
    Camanho, Xian O.
    Edelstein, Jose D.
    Sanchez de Santos, Jose M.
    [J]. GENERAL RELATIVITY AND GRAVITATION, 2014, 46 (01) : 1 - 27
  • [7] Lovelock theory and the AdS/CFT correspondence
    Xián O. Camanho
    José D. Edelstein
    José M. Sánchez de Santos
    [J]. General Relativity and Gravitation, 2014, 46
  • [8] Supergravity, AdS/CFT correspondence, and matrix models
    Yoneya, T
    [J]. PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 1999, (134): : 182 - 206
  • [9] A toy model for the AdS/CFT correspondence
    Berenstein, D
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2004, (07):
  • [10] AdS CFT correspondence and topological field theory
    Witten, E
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 1998, (12):