Kernels of Hankel operators and hyponormality of Toeplitz operators

被引:0
|
作者
Caixing Gu
Jonathan E. Shapiro
机构
[1] California Polytechnic State University,
[2] San Luis Obispo,undefined
[3] CA 93407,undefined
[4] USA; e-mail: cgu@calpoly.edu,undefined
[5] jshapiro@calpoly.edu / http://www.calpoly.edu/~jshapiro ,undefined
来源
Mathematische Annalen | 2001年 / 319卷
关键词
Mathematics Subject Classification (1991): 47-B35, 47-B20;
D O I
暂无
中图分类号
学科分类号
摘要
We give a formula for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\mathrm ker} H_{\overline{\theta_{1}}}^{\ast}H_{\overline {\theta_{2}}}$\end{document} and describe when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\mathrm ker}H_{\overline{\theta_{1}}}^{\ast}H_{\overline{\theta_{2}}}={\mathrm ker} H_{\overline{\theta_{2}}}$\end{document}. We explore the hyponormality of Toeplitz operators whose symbols are of circulant type and some more general types. In addition, we discuss formulas for and estimates of the rank of the self-commutator of a hyponormal Toeplitz operator.
引用
收藏
页码:553 / 572
页数:19
相关论文
共 50 条