Tilings of Convex Polyhedral Cones and Topological Properties of Self-Affine Tiles

被引:0
|
作者
Ya-min Yang
Yuan Zhang
机构
[1] Huazhong Agricultural University,Institute of Applied Mathematics, College of Science
[2] Central China Normal University,Department of Mathematics and Statistics
来源
关键词
Convex polyhedral cone; Translation tiling; Self-affine tile; 52C22; 51M20;
D O I
暂无
中图分类号
学科分类号
摘要
Let a1,…,ar\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{a}}_1,\ldots , {\varvec{a}}_r$$\end{document} be vectors in a half-space of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n$$\end{document}. We call C=a1R++⋯+arR+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C={\varvec{a}}_1{\mathbb {R}}^{+}+\cdots +{\varvec{a}}_r {\mathbb {R}}^{+}$$\end{document} a convex polyhedral cone and {a1,…,ar}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{{\varvec{a}}_1,\ldots , {\varvec{a}}_r\}$$\end{document} a generator set of C. A generator set with the minimal cardinality is called a frame. We investigate the translation tilings of convex polyhedral cones. Let T⊂Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T\subset {\mathbb {R}}^n$$\end{document} be a compact set such that T is the closure of its interior, and J⊂Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {J}}}\subset {\mathbb {R}}^n$$\end{document} be a discrete set. We say (T,J)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(T,{{\mathcal {J}}})$$\end{document} is a translation tiling of C if T+J=C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T+{{\mathcal {J}}}=C$$\end{document} and any two translations of T in T+J\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T+{{\mathcal {J}}}$$\end{document} are disjoint in Lebesgue measure. We show that if the cardinality of a frame of C is larger than the dimension of C, then C does not admit any translation tiling; if the cardinality of a frame of C equals the dimension of C, then the translation tilings of C can be reduced to the translation tilings of (Z+)n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathbb {Z}}^+)^n$$\end{document}. As an application, we characterize all the self-affine tiles possessing polyhedral corners (that is, there exists a point of the tile such that a neighborhood of the point is congruent to a neighborhood of the vertex of a convex polyhedral cone), which generalizes a result of Odlyzko (Proc. Lond. Math. Soc. 37, 213–229 (1978)).
引用
收藏
页码:876 / 901
页数:25
相关论文
共 50 条
  • [1] Tilings of Convex Polyhedral Cones and Topological Properties of Self-Affine Tiles
    Yang, Ya-min
    Zhang, Yuan
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2021, 66 (03) : 876 - 901
  • [2] Neighbours of self-affine tiles in lattice tilings
    Scheicher, K
    Thuswaldner, JM
    [J]. FRACTALS IN GRAZ 2001: ANALYSIS - DYNAMICS - GEOMETRY - STOCHASTICS, 2003, : 241 - 262
  • [3] Self-affine tilings with several tiles, I
    Gröchenig, K
    Haas, A
    Raugi, A
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1999, 7 (02) : 211 - 238
  • [4] Complete Characterization of Polyhedral Self-Affine Tiles
    Protasov, Vladimir Yu.
    Zaitseva, Tatyana
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2023, 70 (03) : 931 - 950
  • [5] Complete Characterization of Polyhedral Self-Affine Tiles
    Vladimir Yu. Protasov
    Tatyana Zaitseva
    [J]. Discrete & Computational Geometry, 2023, 70 : 931 - 950
  • [6] TOPOLOGICAL PROPERTIES OF A CLASS OF SELF-AFFINE TILES IN R3
    Deng, Guotai
    Liu, Chuntai
    Ngai, Sze-Man
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (02) : 1321 - 1350
  • [7] Topological Properties of a Class of Higher-dimensional Self-affine Tiles
    Deng, Guotai
    Liu, Chuntai
    Ngai, Sze-Man
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2019, 62 (04): : 727 - 740
  • [8] Integral self-affine tiles in ℝn part II: Lattice tilings
    Jeffrey C. Lagarias
    Yang Wang
    [J]. Journal of Fourier Analysis and Applications, 1997, 3 : 83 - 102
  • [9] Self-affine quasiperiodic tilings
    Gahler, F
    [J]. GROUP 21 - PHYSICAL APPLICATIONS AND MATHEMATICAL ASPECTS OF GEOMETRY, GROUPS, AND ALGEBRA, VOLS 1 AND 2, 1997, : 972 - 976
  • [10] WAVELETS AND SELF-AFFINE TILINGS
    STRICHARTZ, RS
    [J]. CONSTRUCTIVE APPROXIMATION, 1993, 9 (2-3) : 327 - 346