The boundedness of commutators of sublinear operators on Herz Triebel-Lizorkin spaces

被引:0
|
作者
Chenglong Fang
Jiang Zhou
机构
[1] Renmin University of China,School of Mathematics
[2] Xinjiang University,College of Mathematics and System Science
关键词
commutator; Lipschitz space; Herz space; Triebel-Lizorkin space; sublinear operator; 42B20; 42B25; 47B47;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the authors first prove the characterizations of Herz Triebel-Lizorkin spaces by two families of operators. Applying the characterizations of Herz Triebel-Lizorkin spaces, the author show that the commutators of sublinear operators with Lipschitz functions are also bounded from Herz spaces to Herz Triebel-Lizorkin spaces.
引用
收藏
页码:375 / 383
页数:8
相关论文
共 50 条
  • [1] The boundedness of commutators of sublinear operators on Herz Triebel-Lizorkin spaces
    Fang, Chenglong
    Zhou, Jiang
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2021, 52 (02): : 375 - 383
  • [2] Erratum to: The boundedness of commutators of sublinear operators on Herz Triebel-Lizorkin spaces
    Chenglong Fang
    Jiang Zhou
    [J]. Indian Journal of Pure and Applied Mathematics, 2022, 53 : 811 - 811
  • [3] The Boundedness of Commutators of Sublinear Operators on Herz Triebel-Lizorkin Spaces with Variable Exponent
    Fang, Chenglong
    Wei, Yingying
    Zhang, Jing
    [J]. RESULTS IN MATHEMATICS, 2023, 78 (02)
  • [4] The boundedness of commutators of sublinear operators on Herz Triebel-Lizorkin spaces (vol 52, pg 375, 2021)
    Fang, Chenglong
    Zhou, Jiang
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2022, 53 (03): : 811 - 811
  • [5] The Boundedness of Commutators of Sublinear Operators on Herz Triebel–Lizorkin Spaces with Variable Exponent
    Chenglong Fang
    Yingying Wei
    Jing Zhang
    [J]. Results in Mathematics, 2023, 78
  • [6] Multilinear Commutators of Sublinear Operators on Triebel-Lizorkin Spaces
    Xie Ru-long
    Shu Li-sheng
    Zhang Qian-xiang
    Ji You-qing
    [J]. Communications in Mathematical Research, 2014, 30 (02) : 168 - 178
  • [7] Boundedness of sublinear operators in Triebel-Lizorkin spaces via atoms
    Liu, Liguang
    Yang, Dachun
    [J]. STUDIA MATHEMATICA, 2009, 190 (02) : 163 - 183
  • [8] Boundedness of certain commutators on Triebel-Lizorkin spaces
    Jiang, Liya
    Zhang, Pu
    Jia, Houyu
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 330 (02) : 1264 - 1272
  • [9] On the boundedness of operators in Lp (lq) and Triebel-Lizorkin Spaces
    Boto, Joao Pedro
    [J]. JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2008, 6 (02): : 177 - 186
  • [10] BOUNDEDNESS AND CONTINUITY FOR VARIATION OPERATORS ON THE TRIEBEL-LIZORKIN SPACES
    Liu, Feng
    Wen, Yongming
    Zhang, Xiao
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 59 (06) : 1539 - 1555