Analysis of optimal threshold selection for spectrum sensing in a cognitive radio network: an energy detection approach

被引:0
|
作者
Alok Kumar
Prabhat Thakur
Shweta Pandit
G. Singh
机构
[1] Jaypee University of Information Technology,Department of Electronics and Communication Engineering
[2] University of Johannesburg,Department of Electrical and Electronics Engineering Sciences
来源
Wireless Networks | 2019年 / 25卷
关键词
Cognitive radio; CFAR; CDR; MEP; Optimal threshold; Throughput;
D O I
暂无
中图分类号
学科分类号
摘要
The spectrum sensing is a key process of the cognitive radio technology in which the cognitive users identify the unutilized/underutilized primary users (PUs)/licensed users spectrum for its efficient utilization. The sensing performance of cognitive radio (CR) is generally measured in terms of false-alarm probability (Pf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ P_{f} $$\end{document}) and detection probability (Pd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ P_{d} $$\end{document}). IEEE 802.22 wireless regional area network is one of the typical cognitive radio standards to access unused licensed frequencies of TV band and according to this standard, the false-alarm probability of CR should be ≤ 0.1 and the detection probability must be ≥ 0.9. Further, the detection and false-alarm probabilities are greatly affected by the selected threshold value in the spectrum sensing approach and selection of threshold is a crucial step to yield the status (presence/absence) of PU. In most of the available literatures, the threshold is decided by fixing one parameter (Pf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ P_{f} $$\end{document} or Pd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ P_{d} $$\end{document}) and optimizing the other parameter (Pd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ P_{d} $$\end{document} or Pf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ P_{f} $$\end{document}). Moreover, at low SNR, while achieving one of the targeted sensing parameter, there is significant degradation in the other sensing parameter. Therefore, in this paper, we are motivated to decide the optimal threshold at low SNR (signal-to-noise ratio) in such a way where we can jointly achieve both sensing matrices (Pf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ P_{f} $$\end{document} ≤ 0.1 and Pd≥0.9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ P_{d} \ge 0.9 $$\end{document}) and provided better sensing performance in comparison to that of the traditional constant false-alarm rate and constant detection rate (CDR) threshold selection approaches. Further, we have illustrated that at low SNR, the proposed optimal threshold selection approach has provided better throughput as compare to that of the threshold selected by traditional CDR approach. The proposed approach has improved throughput approximately 24.63% when compared with CDR at chosen SNR.
引用
收藏
页码:3917 / 3931
页数:14
相关论文
共 50 条
  • [1] Analysis of optimal threshold selection for spectrum sensing in a cognitive radio network: an energy detection approach
    Kumar, Alok
    Thakur, Prabhat
    Pandit, Shweta
    Singh, G.
    [J]. WIRELESS NETWORKS, 2019, 25 (07) : 3917 - 3931
  • [2] Optimal Threshold of Energy Detection for Spectrum Sensing in Cognitive Radio
    Xie, Shujing
    Shen, Lianfeng
    Liu, Jishun
    [J]. 2009 INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP 2009), 2009, : 826 - 830
  • [3] Optimal sensing duration and threshold selection approach in cognitive radio networks with cooperative spectrum sensing
    Vinod, Malvika
    Sharma, Ila
    Singh, Ghanshyam
    [J]. INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, 2024,
  • [4] On Optimal Threshold Selection in Cooperative Spectrum Sensing for Cognitive Radio Networks: An Energy Detection Approach Using Fuzzy Entropy Maximization
    Subhankar Chatterjee
    Santi P. Maity
    Tamaghna Acharya
    [J]. Wireless Personal Communications, 2015, 84 : 1605 - 1625
  • [5] On Optimal Threshold Selection in Cooperative Spectrum Sensing for Cognitive Radio Networks: An Energy Detection Approach Using Fuzzy Entropy Maximization
    Chatterjee, Subhankar
    Maity, Santi P.
    Acharya, Tamaghna
    [J]. WIRELESS PERSONAL COMMUNICATIONS, 2015, 84 (03) : 1605 - 1625
  • [6] Cooperative spectrum sensing optimal threshold selection in cognitive radio networks
    Ostovar, Arash
    [J]. INTERNET TECHNOLOGY LETTERS, 2020, 3 (05)
  • [7] Enhanced Spectrum Sensing Based on Energy Detection in Cognitive Radio Network using Adaptive Threshold
    Alom, Md. Zulfikar
    Godder, Tapan Kumar
    Morshed, Mohammad Nayeem
    Maali, Asmaa
    [J]. PROCEEDINGS OF 2017 INTERNATIONAL CONFERENCE ON NETWORKING, SYSTEMS AND SECURITY (NSYSS), 2017, : 138 - 143
  • [8] Double threshold energy detection of cooperative spectrum sensing in cognitive radio
    Zhu, Jiang
    Xu, Zhengguang
    Wang, Furong
    Huang, Benxiong
    Zhang, Bo
    [J]. 2008 3RD INTERNATIONAL CONFERENCE ON COGNITIVE RADIO ORIENTED WIRELESS NETWORKS AND COMMUNICATIONS, 2008, : 22 - 26
  • [9] Optimal Selection of Spectrum Sensing Duration for an Energy Harvesting Cognitive Radio
    El Shafie, Ahmed
    Sultan, Ahmed
    [J]. 2013 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2013, : 1020 - 1025
  • [10] Energy Detection based Spectrum Sensing for Cognitive Radio Network
    Pandya, Priyanka
    Durvesh, Aslam
    Parekh, Najuk
    [J]. 2015 FIFTH INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS AND NETWORK TECHNOLOGIES (CSNT2015), 2015, : 201 - 206