Let G be the symmetric group \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\mathbb S}_m}$$\end{document}. It is an important open problem whether the dimension of the Nichols algebra \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathfrak{B} (\mathcal{O},\rho)}$$\end{document} is finite when \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal{O}$$\end{document} is the class of the transpositions and ρ is the sign representation, with m ≥ 6. In the present paper, we discard most of the other conjugacy classes showing that very few pairs \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${(\mathcal{O},\rho)}$$\end{document} might give rise to finite-dimensional Nichols algebras.
机构:
Univ Nacl Cordoba, CIEM, CONICET, Fac Matemat Astron & Fis, RA-5000 Cordoba, ArgentinaUniv Buenos Aires, FCEyN, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
Andruskiewitsch, N.
Fantino, F.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nacl Cordoba, CIEM, CONICET, Fac Matemat Astron & Fis, RA-5000 Cordoba, ArgentinaUniv Buenos Aires, FCEyN, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
Fantino, F.
Grana, M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Buenos Aires, FCEyN, Dept Matemat, RA-1428 Buenos Aires, DF, ArgentinaUniv Buenos Aires, FCEyN, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
Grana, M.
Vendramin, L.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Buenos Aires, FCEyN, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
Univ Gral Sarmiento, Inst Ciencias, RA-1653 Buenos Aires, DF, ArgentinaUniv Buenos Aires, FCEyN, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina