Hille and Nehari-Type Oscillation Criteria for Third-Order Emden–Fowler Neutral Delay Dynamic Equations

被引:0
|
作者
Yizhuo Wang
Zhenlai Han
Shurong Sun
Ping Zhao
机构
[1] University of Jinan,School of Mathematical Sciences
[2] University of Jinan,School of Control Science and Engineering
关键词
Oscillation; Third-order; Neutral dynamic equations; Time scales; 34K11; 34N05;
D O I
暂无
中图分类号
学科分类号
摘要
We establish some oscillation criteria for the third-order Emden–Fowler neutral delay dynamic equations of the form: (a(t)(x(t)+r(t)x(τ(t)))ΔΔ)Δ+p(t)xγ(δ(t))=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} (a(t)(x(t)+r(t)x(\tau (t)))^{\Delta \Delta })^\Delta +p(t)x^\gamma (\delta (t))=0 \end{aligned}$$\end{document}on a time scale T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}$$\end{document}, where γ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma >0$$\end{document} is a quotient of odd positive integers, and a and p are real-valued positive rd-continuous functions defined on T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}$$\end{document}. Due to the different values of γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}, we give not only the oscillation criteria for superlinear neutral delay dynamic equations, but also the oscillation criteria for sublinear neutral delay dynamic equations based on the Hille and Nehari-type oscillation criteria. Our results extend and improve some known results in the literature and are new even for the corresponding third-order differential equations and difference equations as our special cases.
引用
收藏
页码:1187 / 1217
页数:30
相关论文
共 50 条
  • [1] Hille and Nehari-Type Oscillation Criteria for Third-Order Emden-Fowler Neutral Delay Dynamic Equations
    Wang, Yizhuo
    Han, Zhenlai
    Sun, Shurong
    Zhao, Ping
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2017, 40 (03) : 1187 - 1217
  • [2] Hille and Nehari type criteria for third-order delay dynamic equations
    Agarwal, Ravi P.
    Bohner, Martin
    Li, Tongxing
    Zhang, Chenghui
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2013, 19 (10) : 1563 - 1579
  • [3] Hille and Nehari type criteria for third-order dynamic equations
    Erbe, L.
    Peterson, A.
    Saker, S. H.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 329 (01) : 112 - 131
  • [4] Oscillation criteria for third order neutral Emden–Fowler delay dynamic equations on time scales
    Yunlong Shi
    Zhenlai Han
    Chuanxia Hou
    [J]. Journal of Applied Mathematics and Computing, 2017, 55 : 175 - 190
  • [5] Oscillation criteria for a class of third-order Emden–Fowler delay dynamic equations with sublinear neutral terms on time scales
    Zhiyu Zhang
    Ruihua Feng
    [J]. Advances in Difference Equations, 2021
  • [6] Oscillation criteria for third order neutral Emden-Fowler delay dynamic equations on time scales
    Shi, Yunlong
    Han, Zhenlai
    Hou, Chuanxia
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2017, 55 (1-2) : 175 - 190
  • [7] Oscillation Behavior of Third-Order Neutral Emden-Fowler Delay Dynamic Equations on Time Scales
    Han, Zhenlai
    Li, Tongxing
    Sun, Shurong
    Zhang, Chenghui
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2010,
  • [8] Oscillation Behavior of Third-Order Neutral Emden-Fowler Delay Dynamic Equations on Time Scales
    Zhenlai Han
    Tongxing Li
    Shurong Sun
    Chenghui Zhang
    [J]. Advances in Difference Equations, 2010
  • [9] Oscillation criteria for a class of third-order Emden-Fowler delay dynamic equations with sublinear neutral terms on time scales
    Zhang, Zhiyu
    Feng, Ruihua
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [10] Oscillation Criteria for Third-Order Emden-Fowler Differential Equations with Unbounded Neutral Coefficients
    Chatzarakis, George E.
    Grace, Said R.
    Jadlovska, Irena
    Li, Tongxing
    Tunc, Ercan
    [J]. COMPLEXITY, 2019, 2019