On a Two-Point Boundary Value Problem for Second Order Singular Equations

被引:0
|
作者
A. Lomtatidze
P. Torres
机构
[1] Mathematical Institute of the Academy of Sciences of the Czech Republic,Department of Mathematical Analysis, Faculty of Natural Sciences
[2] Žižkova 22,Departamento de Matemática Aplicada
[3] Masaryk University,undefined
[4] Janáčkovo nám. 2a,undefined
[5] Universidad de Granada,undefined
来源
关键词
second order singular equation; two-point boundary value problem; solvability;
D O I
暂无
中图分类号
学科分类号
摘要
The problem on the existence of a positive in the interval ]a, b[ solution of the boundary value problem \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$u'' = f(t,u) + g(t,u)u';{\text{ }}u(a + ) = 0,{\text{ }}u(b - ) = 0$$ \end{document} is considered, where the functions f and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$g:{\text{ }}\left] {a,b} \right[ \times \left] {0, + \infty } \right[ \to \mathbb{R}$$ \end{document} satisfy the local Carathéodory conditions. The possibility for the functions f and g to have singularities in the first argument (for t = a and t = b) and in the phase variable (for u = 0) is not excluded. Sufficient and, in some cases, necessary and sufficient conditions for the solvability of that problem are established.
引用
收藏
页码:19 / 43
页数:24
相关论文
共 50 条