The growth behavior of self-assembled monolayer films strongly depends on parameters such as solvent, water concentration in the solvent, substrate type, and deposition method. A further parameter, the temperature, is of particular importance. It has been found that growth kinetics, size, and shape of the structures obtained strongly depend on the deposition temperature. Thus, exact adjustment and control of the solution temperature is of crucial importance for investigation of deposition mechanisms. The development of a temperature control unit has been the basis for a series of experiments on deposition of octadecyltrichlorosilane (OTS) on silicon wafers to study the influence of temperature on growth kinetics and film structure. Characterization of the films was performed with ellipsometry and atomic-force microscopy. It has been found that octadecylsiloxane (ODS) island sizes decrease with increasing temperature. Furthermore, a characteristic temperature exists above which increasingly disordered deposition occurs. At low temperatures (5–10 °C) smaller dot-like features are observed besides larger fractally shaped islands characteristic for self-assembly growth of ODS films. Our results indicate that these small dot-like features originate from ordered aggregates in the adsorption solution and that they are the precursors of the formation of larger islands. However, they can only be observed at low temperatures, because at room temperature they coalesce quickly to form larger units, due to the high surface mobility.