Norm inequalities involving upper bounds for certain matrix operators in Orlicz-type sequence spaces

被引:0
|
作者
Atanu Manna
机构
[1] Indian Institute of Carpet Technology,Faculty of Mathematics
来源
The Journal of Analysis | 2019年 / 27卷
关键词
Inequality for sums; Weighted Orlicz sequence spaces; Hausdorff matrix; Nörlund matrix; Euler matrix; Fibonacci numbers; Primary 11B39; 26D15; 47A30; Secondary 40G05; 46A45;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, upper bounds of certain matrix operator norms are estimated in Orlicz-type weighted sequence spaces. Three spaces, namely, weighted Orlicz–Euler eλ,φα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e_{\lambda , \varphi }^{\alpha }$$\end{document}, weighted Orlicz–Fibonacci Fλ,φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{\lambda , \varphi }$$\end{document} and weighted Orlicz lφ(λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_\varphi (\lambda )$$\end{document} are considered. Denote ‖A‖X,Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert A\Vert _{X, Y}$$\end{document} as the operator norm of the matrix A=(an,k)n,k≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A=(a_{n, k})_{n, k\ge 0}$$\end{document} which maps X into Y, where X and Y are two normed sequence spaces. Then the evaluation of upper bounds for ‖A‖lφ(λ),eλ,φα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert A\Vert _{l_\varphi (\lambda ), e_{\lambda , \varphi }^{\alpha }}$$\end{document}, ‖A‖lφ(λ),Fλ,φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert A\Vert _{l_\varphi (\lambda ),F_{\lambda , \varphi }}$$\end{document} and ‖A‖lφ(λ),lφ(μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert A\Vert _{l_\varphi (\lambda ), l_\varphi (\mu )}$$\end{document}, where A is either Hausdorff or Nörlund matrices is carried out throughout this paper. Some Hardy type formulas are established in case of Hausdorff matrices. Certain inclusion results are also obtained for each of the three sequence spaces. The results obtained in this work strengthen the results recently presented by Lashkaripour and Foroutannia (Proc Indian Acad Sci (Math Sci) 116(3):325–336, 2006) and Talebi and Dehghan (Linear Multilinear Algebra 62(10):1275–1284, 2014; Linear Multilinear Algebra 64(2):196–207, 2016).
引用
收藏
页码:761 / 779
页数:18
相关论文
共 50 条
  • [1] Norm inequalities involving upper bounds for certain matrix operators in Orlicz-type sequence spaces
    Manna, Atanu
    JOURNAL OF ANALYSIS, 2019, 27 (03): : 761 - 779
  • [2] Norm inequalities involving upper bounds for certain matrix operators on Orlicz–Euler and Orlicz–Taylor double sequence spaces
    Taja Yaying
    Bipan Hazarika
    S. A. Mohiuddine
    Awad A. Bakery
    The Journal of Analysis, 2023, 31 (4) : 2817 - 2834
  • [3] Norm inequalities involving upper bounds for certain matrix operators on Orlicz-Euler and Orlicz-Taylor double sequence spaces
    Yaying, Taja
    Hazarika, Bipan
    Mohiuddine, S. A.
    Bakery, Awad A.
    JOURNAL OF ANALYSIS, 2023, 31 (04): : 2817 - 2834
  • [4] Norm Inequalities Involving Upper Bounds for Operators in Orlicz-Taylor Sequence Spaces
    Manna, Atanu
    MATHEMATICS AND COMPUTING (ICMC 2018), 2018, 253 : 329 - 339
  • [5] Inequalities involving upper bounds for certain matrix operators
    R. Lashkaripour
    D. Foroutannia
    Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 2006, 116 : 325 - 336
  • [6] Inequalities involving upper bounds for certain matrix operators
    Lashkaripour, R.
    Foroutannia, D.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2006, 116 (03): : 325 - 336
  • [7] Some Inequalities Involving Lower Bounds of Operators on Weighted Sequence Spaces by a Matrix Norm
    Moazzen, A. R.
    Lashkaripour, R.
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2012, 3 (01): : 45 - 54
  • [8] Estimation of upper bounds of certain matrix operators on Binomial weighted sequence spaces
    Taja Yaying
    Bipan Hazarika
    S. A. Mohiuddine
    M. Mursaleen
    Advances in Operator Theory, 2020, 5 : 1376 - 1389
  • [9] Estimation of upper bounds of certain matrix operators on Binomial weighted sequence spaces
    Yaying, Taja
    Hazarika, Bipan
    Mohiuddine, S. A.
    Mursaleen, M.
    ADVANCES IN OPERATOR THEORY, 2020, 5 (04) : 1376 - 1389
  • [10] Upper bounds of some matrix operators on binomial and Orlicz-binomial double sequence spaces
    Yaying, Taja
    Hazarika, Bipan
    SCIENTIFIC AFRICAN, 2022, 17