The Schur–Weyl Graph and Thoma’s Theorem

被引:0
|
作者
A. M. Vershik
N. V. Tsilevich
机构
[1] St. Petersburg Department of Steklov Institute of Mathematics,
[2] Russian Academy of Sciences,undefined
[3] St. Petersburg State University,undefined
[4] Institute for Information Transmission Problems,undefined
关键词
Schur–Weyl graph; RSK algorithm; Thoma’s theorem; central measures;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:198 / 209
页数:11
相关论文
共 50 条
  • [1] The Schur-Weyl Graph and Thoma's Theorem
    Vershik, A. M.
    Tsilevich, N., V
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2021, 55 (03) : 198 - 209
  • [2] Stochastic Monotonicity in Young Graph and Thoma Theorem
    Bufetov, Alexey
    Gorin, Vadim
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (23) : 12920 - 12940
  • [3] Weyl spectra and Weyl's theorem
    Cao, XH
    Guo, MZ
    Meng, B
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 288 (02) : 758 - 767
  • [4] Weyl spectra and Weyl's theorem
    Han, YM
    Lee, WY
    STUDIA MATHEMATICA, 2001, 148 (03) : 193 - 206
  • [5] On the Weyl spectrum: Spectral mapping theorem and Weyl's theorem
    Hou, JC
    Zhang, XL
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 220 (02) : 760 - 768
  • [6] Weyl's theorem, a-Weyl's theorem, and local spectral theory
    Curto, RE
    Han, YM
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2003, 67 : 499 - 509
  • [7] The converse of Schur's theorem
    Niroomand, Peyman
    ARCHIV DER MATHEMATIK, 2010, 94 (05) : 401 - 403
  • [8] Polynomial Schur's Theorem
    Liu, Hong
    Pach, Peter Pal
    Sandor, Csaba
    COMBINATORICA, 2022, 42 (SUPPL 2) : 1357 - 1384
  • [9] The converse of Schur’s theorem
    Peyman Niroomand
    Archiv der Mathematik, 2010, 94 : 401 - 403
  • [10] Polynomial Schur’s Theorem
    Hong Liu
    Péter Pál Pach
    Csaba Sándor
    Combinatorica, 2022, 42 : 1357 - 1384